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Abstract: Milne’s Lorentz-group-based cosmological spacetime and Gelfand-Naimark unitary
Lorentz-group representation through transformation of Hilbert-space vectors combine to define
a Fock space of ‘cosmological preons’—quantum-theoretic universe constituents. Lorentz
invariance of ‘age’–global time– accompanies Milne’s ‘cosmological principle’ that attributes
to each spatial location a Lorentz frame. We divide Milne spacetime—the interior of a forward
lightcone– into ‘slices’ of fixed macroscopic width in age, with ‘cosmological rays’ defined
on (hyperbolic) slice boundaries. The Fock space of our macroscopically-discrete quantum
cosmology (DQC) is defined only at these exceptional universe ages. Self-adjoint-operator
expectations over the ray at any spacetime-slice boundary prescribe throughout the following
slice a non-fluctuating continuous ‘classical reality’ represented by Dalembertians, of classical
electromagnetic (vector) and gravitational (tensor) potentials, that are current densities of
locally-conserved electric charge and energy-momentum. The ray at the upper boundary
of a slice is determined from the lower-boundary ray by branched slice-traversing stepped
Feynman paths that carry potential-depending action. Path step is at Planck-scale; branching
points represent preon creation-annihilation. Each single-preon wave function depends on the
coordinates of a 6-dimensional manifold, one of whose ‘extra’ dimensions associates in Dirac
sense to a self-adjoint operator that represents the preon’s reversible local time. Within a
path, local-time intervals equal corresponding intervals of monotonically-increasing global time
even though, within a (fixed-age) ray, the local time of a preon is variable. The operator
canonically conjugate to a preon’s local time represents its (total) energy in its (Milne) ‘local
frame’. A macroscopically-stable positive-energy single-preon wave function identifies either
with a Standard-Model elementary particle or with a graviton. Within intermediate-density
sub-Hubble-scale universe regions such as the solar system, where ‘reproducible measurement’ is
meaningful, physical special relativity—‘Poincaré invariance’—approximates DQC for spacetime
scales far above that of Planck.
c© Electronic Journal of Theoretical Physics. All rights reserved.

Keywords: Cosmology; Quantum Gravity; Discrete Quantum Cosmology
PACS (2008): 98.80.-k; 98.80.Jk; 98.80.Qc; 04.60.-m; 04.60.Nc
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1. Introduction

Nonexistence of unitary finite-dimensional Lorentz-group representations has heretofore

obstructed, for dynamically-changing numbers of particles, a Dirac-type quantum theory

that, at fixed (global) time, represents entity location, momentum, spin and energy by

self-adjoint operators on a (rigged) Hilbert space [1]. The Standard Model, founded not

on particles but on quantum fields associated to nonunitary finite-dimensional Lorentz-

group representations, and representing action by ill-defined local-field-product operators

with perturbative renormalization procedures to manage consequent divergences, has

failed to accommodate gravity. Problematic, furthermore, is the Standard-Model de-

scription of bound states (‘condensed matter’), perturbation theory being unsuited to

macroscopically-stationary composite wave functions.

The discrete quantum cosmology (DQC) proposed in Reference [2] and elaborated in

certain respects by the present paper postulates at exceptional (global) ‘ages’ a ‘cosmological-

preon’ Fock space via unitary (infinite-dimensional) single-preon representations of the

semi-simple 12-parameter right-left Lorentz-group. Our representations are adaptations

of those found by Gelfand and Naimark (G-N) [3].

Cosmological preons are quantum-theoretic universe constituents. We divide global

spacetime into ‘slices’ of fixed macroscopic width in age, with ‘cosmological rays’ defined

on slice boundaries—our Fock space attaching only to these exceptional universe ages.

The ray at the upper boundary of a slice is determined from that at the lower boundary

by action-carrying stepped and branching Feynman paths that traverse the slice.

Self-adjoint-operator expectations at a spacetime-slice boundary prescribe through-

out the following slice a non-fluctuating continuous ‘classical reality’—current densities of

locally-conserved electric charge and energy-momentum. Real expectations further pre-

scribe action-determining electromagnetic and gravitational potentials. (Fluctuating—

path-dependent—potentials also contribute to path action.)

Any cosmological preon (henceforth throughout this paper simply called ‘preon’) is

‘lightlike’—having velocity-magnitude c and a polarization transverse to velocity direction—

and carries momentum, angular momentum and energy. However, only very-special preon

wave functions exhibit, through expectations (at the exceptional ages) of self-adjoint op-

erators, the relation between energy, momentum, spin and spacetime location that char-

acterizes ‘ordinary matter’. A DQC Fock-space ray, representing the entire universe at

some exceptional age, comprises sums of products of preon wave functions whose dis-

crete quantum numbers allow certain macroscopically-stable positive-energy single-preon

states to be interpreted as lepton, quark, weak boson, photon or graviton. (A massive el-

ementary particle at rest is represented by a unitary preonic analog of Dirac’s nonunitary

special-relativistic electron wave function–that superposes opposite lightlike velocities.)

The spacing between exceptional ages provides (precise) cosmological meaning for the

∗ gfchew@lbl.gov
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adjective ‘macroscopic’. Reference (2) addresses ‘creation-annihilation’ Feynman paths

that traverse each spacetime slice and that carry gravitational, as well as electromagnetic

and weak-strong action.

Although the DQC Fock space comprises Pauli-symmetrized superpositions of prod-

ucts of invariantly-normed single-preon functions, the present paper at the risk of obscur-

ing total relativity chooses to emphasize the unfamiliar labels on which depends a wave

function belonging to an individual preon. Special functions that represent elementary

particles will here be exposed. Another paper will define self-adjoint operators that rep-

resent, through superposition of annihilation-creation operators, the (‘familiar’ although

cosmological) electromagnetic and gravitational radiation fields.

Any single-preon basis carries six labels—‘extra’ preon dimensions prescribing a veloc-

ity of magnitude c whose direction is generally independent of momentum direction. To

illustrate let us immediately here compare a DQC basis with 4 continuous and 2 discrete

labels to the familiar ‘asymptotic Hilbert-space’ labels of S-matrix theory. This set of

preon labels comprises energy, ‘momentum magnitude’, momentum direction (2 angles)

and a pair of invariant (discrete) helicities. One of the latter is the (familiar) angular

momentum in the direction of momentum while the other—here to be called ‘velocity

helicity’–is angular momentum in the direction of velocity. The energy of a preon is (c

times) the component of its momentum in the direction of its velocity.

Identifiable as ‘extra’ in this label set are the preon’s energy and its velocity-helicity.

Although the continuous label called ‘preon-momentum magnitude’ sounds familiar, we

warn readers that this label enjoys an association to Lorentz-group Casimirs which par-

allels the rotation-group-Casimir association of a massive particle’s discrete (integer or

half-integer) spin magnitude. Only for large values does ‘preon-momentum magnitude’

enjoy the classical meaning suggested by the name we give it.

Commutability of a complete set of 6 self-adjoint operators that represent the fore-

going 6 preon attributes derives from commutability of right Lorentz transformations

with left transformations. Our usage of the adjectives ‘right’ and ‘left’ will be explained.

DQC Hilbert space unitarily represents a 12-parameter group—the product of right and

left Lorentz groups. DQC action is right-Lorentz invariant, its right transformations

being those employed by Milne to define a cosmological spacetime [4] and which we

call ‘Milne transformations’ to avoid confusion with the Einstein-Poincaré meaning for

a Lorentz transformation. The 6 self-adjoint operators that generate (non-commuting)

Milne transformations constitute a second-rank antisymmetric tensor (a 6-vector) whose

elements represent preon momentum and angular momentum. DQC dynamics conserves

momentum and angular momentum but not energy—which associates to one of the left

Lorentz generators. Velocity helicity associates to another left generator, one which com-

mutes with preon energy as well as with momentum and angular momentum.

Readers are alerted that two different self-adjoint operators represent, for different

purposes, preon energy ; the spectrum of one operator is discrete and positive while that

of the other spans the real line. Expectations of the positive-energy operator determine

classical reality and gravitational action. The indefinite-energy operator is the generator



Electronic Journal of Theoretical Physics 6, No. 20 (2009) 1–26 3

of local-time displacement—the ‘Dirac conjugate’ of the individual-preon (local-) time

operator. DQC distinguishes local time from global time. Despite local time in a path

increasing monotonically at the same rate as global time, in a ray local time is reversible.

Although DQC left transformations lack any 6-parameter-symmetry-group precedent

in natural philosophy, a 1-parameter left subgroup associates to local -time (not global

‘age’) translation. The generator of this left U(1) subgroup represents indefinite preon

energy. (Spacetime slicing precludes meaning for continuous ‘age translation’.) Another

U(1) left subgroup, generated by preon velocity helicity, comprises rotations about the

preon’s velocity direction. In the DQC algebra of self-adjoint preon operators (which we

avoid calling ‘observables’ because cosmology admits no a priori meaning for ‘measure-

ment’), the two left-Lorentz-group Casimirs are equal to the two right Casimirs (com-

muting with all 12 group generators).

Reference (2) addresses the DQC action of branched Feynman paths. The present

paper is complementary–ignoring path action while addressing various 6-labeled bases for

single-preon Hilbert space. Each basis corresponds to a complete set of 6 commuting self-

adjoint operators (a 6-csco). Unitary Hilbert-space regular representation of the product

of right and left Lorentz groups provides a DQC path-contactable basis that parallels the

Feynman-path-contacting coordinate basis for Dirac’s nonrelativistic quantum theory [1].

Analogs of Dirac’s momentum basis associate to unitary irreducible (‘unirrep’) SL(2,c)

representations.

The algebra of preon self adjoint operators collectively represents in Dirac sense preon

spatial location, velocity, polarization, energy, momentum and angular momentum, as

well as velocity-helicity and momentum-helicity. Of course not all these operators com-

mute with each other. Each of the DQC bases discussed here associates to a different

6-csco. To deal with a variety of issues the present paper will invoke seven alternative

csco’s.

In the ‘path basis’ each preon’s ‘canonical coordinate’ is a product of the 6 continuous

coordinates of a manifold traversed by Feynman paths that comprise straight positive-

lightlike ‘arcs’ which may be created or annihilated at cubic vertices as a path progresses.

The local time along any arc has unit derivative with respect to global age. Any path

contributes, by Feynman’s prescription, to the determination from some ‘ray’ of the

succeeding ray. Each preon of a ray contacts exactly one starting arc of a Feynman path,

and each finishing path-arc contacts exactly one preon of the subsequent ray. Any path

arc failing to reach its slice’s upper bound is annihilated at a path branching where one

or two new arcs are created.

We employ the term ‘ray’ because the norm and overall phase of a DQC wave function

lack probabilistic or other significance. Heisenberg uncertainty– leading to ‘many worlds’

in previous attempts to formulate a quantum cosmology–is absent from DQC.

Our quantum-theoretic version of Milne’s ‘cosmological principle’ [4] recognizes time

arrow and absoluteness of motion, while respecting Mach’s principle in the sense discussed

by Wilczek [5]. Einstein-Poincaré special relativity ignores time arrow and motion ab-

soluteness, although partially accommodating Mach by invariance of maximum velocity.
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(General relativity disregards Planck and Dirac as well as Milne.) Application of DQC

to physics requires scale-based approximation; DQC addresses an evolving universe that

lacks a priori meaning for reproducible measurement but which allows scale-dependent

approximate meaning. The general meaning of ‘physics’ and of special relativity in partic-

ular is confined to spacetime scales tiny compared to that of Hubble while huge compared

to that of Planck. Reference (6) presents a Euclidean-group-based physics-scale gravity-

less approximation to DQC that may be described as a (Higgsless) ‘sliced-spacetime

Standard Model’ (ssSM).

The DQC (global) age, invariant under both right and left transformations, plays a

discrete role paralleling that of continuous time in nonrelativistic quantum theory. DQC

Feynman paths connect successive macroscopically-spaced exceptional ages at each of

which is defined a cosmological Fock-space ray—in a sense recalling S-matrix theory.

DQC spacetime divides into macroscopic-width ‘slices’ whose boundaries locate at the

exceptional ages. Path branching—path-arc creation or annihilation–is forbidden at slice

boundaries where a ray is defined—occurring at ages interior to a slice where rays are

not defined. DQC dynamics prescribes quantum propagation in the discrete S-matrix

sense of an “in state” leading to a subsequent “out state” without any wave function

being defined between in and out.

Although not discussed in the present paper, the aggregation of DQC Hilbert space,

path rules and initial condition “spontaneously” breaks C, P and CP symmetries. Be-

cause the DQC Hilbert space represents a group isomorphic to the complex Lorentz group

(as does analytic S-matrix theory), some cosmological counterpart to physical CPT sym-

metry promises to be revealed by future theoretical investigation.

The here-examined infinite-dimensional single-preon Hilbert space comprises normed

functions of the continuous coordinates (path-basis labels) that ‘classically locate’ an

individual preon within a 6-dimensional manifold which is at once a right and a left

group manifold (common left-right Haar measure). The single-preon infinite-dimensional

Hilbert space has as a factor a finite-dimensional (64 dimensions (7)) Hilbert subspace

of discrete labels, invariant under both right and left continuous transformations, labels

that are largely ignored by the present paper. Discrete labels carried by both path and

ray distinguish different preon ‘sectors’ (e.g., electron, up-quark, photon, graviton) by

specifying electric charge, color, generation, etc [7].

We shall here attend to an invariant 2-valued parity-related “handedness” carried

both by path arcs (between path-branching points) and by preons–in contrast to preon

helicities that are undefined for a path arc. DQC Hilbert space correlates handedness

to the sign of momentum and velocity helicities. Both these helicities are right-Lorentz

(Milne) invariant.

G-N discussed two different bases for a Hilbert space that represents unitarily the

group SL(2,c) [4], without attempting for either basis a natural-philosophical interpre-

tation. The vectors of one basis—analog to the coordinate basis of nonrelativistic Dirac

theory–are normed functions over the 6-dimensional (continuous, left-right) manifold. We

call this the ‘path basis’ because DQC Feynman paths traverse this 6-space. G-N’s second
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basis–that we here call ‘G-N unirrep’–parallels the Dirac-Fourier-Wigner momentum-spin

basis of nonrelativistic quantum theory that unitarily and irreducibly represents the Eu-

clidean group [8]. (The 6-parameter compound Euclidean group is a contraction of the

6-parameter semisimple Lorentz group.) Although G-N’s transformation connecting their

two bases differs from Fourier-Wigner, wave-function norm is preserved; the transforma-

tion is unitary.

We modify the G-N unirrep basis by (unitary) Fourier transformations of wave-

function dependence on a pair of complex directional labels, so as to diagonalize simulta-

neously preon (indefinite) energy—the component of momentum in velocity direction–and

components of momentum and angular momentum in some arbitrarily-specified direction.

A continuous Casimir label, maintained undisturbed from the G-N unirrep basis, we call

‘magnitude of momentum’. Two discrete labels are helicity interpretable—components of

angular momentum in velocity and momentum directions. The modified basis, which fa-

cilitates meaning for ‘preon parity reflection’ while remaining a unitary irreducible SL(2,c)

representation, we call the ‘energy-momentum unirrep basis’.

The universe spacetime proposed by Milne in the nineteen thirties [4]—an open

forward-lightcone interior whose boundary has ‘big-bang’ interpretation— endows ‘Lorentz

transformation’ with a cosmological time-arrowed meaning different from the Einstein-

Poincaré special-relativistic physics meaning (ignoring time arrow) that augments Lorentz

invariance by spacetime-displacement invariance. (Arbitrary spacetime displacements are

not allowed in Milne spacetime. A sufficiently large spacelike or negative-timelike dis-

placement may move a point of Milne’s spacetime outside his universe.) In contrast to

an Einstein boost between different ‘rest frames’ that each assigns a different set of ve-

locities to massive entities within some macroscopic region, Milne boosts relate to each

other different ‘local frames’ that each associates to a different spatial location. Milne

boosts–right DQC transformations–are spatial displacements at fixed universe age in a

curved (hyperbolic) 3-space.

General relativity’s association of gravity to spacetime curvature may cause readers

to suppose inability of flat Milne spacetime to represent gravity. But DQC gravitational

action at a distance, plus creation and annihilation of soft-gravitonic arcs at path branch-

ing points, enables discretized spacetime curvature via ‘gentle’ branchings of stationary-

action Feynman paths [2]. Any DQC path, as prescribed in Reference (2), is an ‘event

graph’—a set of spacetime-located cubic vertices connected by spacetime-straight arcs of

positive-lightlike 4-velocity that carry positive energy as well as discrete attributes. By its

disregard of Planck’s constant, general relativity ignores gravitons and might be described

as approximating, by a spacetime-curving Feynman-path trajectory (e.g., an electron tra-

jectory), an arc-sector-maintaining stationary-action sequence of DQC straight ‘hard’ arcs

that are separated at gentle events by ‘soft’ gravitonic-arc absorption or emission.

The adjectives ‘hard’ and ‘soft’ here refer to the energy scale set by Planck’s constant

h times the inverse of the age width of a spacetime slice—the time interval that defines

cosmologically the adjective ‘macroscopic’. Both the Standard Model and the Reference

(6) ssSM revision thereof attend to the Planck constant, while setting G equal to 0 and
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achieving flat 3-space through disregard of the Hubble constant H–suppressing redshift

by treating universe age as infinite. The ssSM physics approximation to DQC differs

from the Standard Model through recognition of macroscopic spacetime slicing. Even

though ignoring gravity and redshift, ssSM by accommodating soft photons dynamically

represents the macroscopic electromagnetic observations that are taken for granted by the

S-matrix standardly employed to interpret experiments. Furthermore, spacetime slicing

frees ssSM from need for elementary Higgs scalar bosons.

In (un-approximated) DQC, the (inverse) geometric mean of slice macroscopic width

and Planck-scale age step (along any path-arc) [2] establishes a particle-mass scale—a

scale that in the Standard Model must be supplied by Higgs scalars. DQC particle scale

survives into the ssSM approximation because the latter, although ignoring both Hubble

and Planck scales, keeps fixed the ratio H2/G as G and H individually approach zero.

This ratio sets the universe mean energy density that is required by Mach’s principle in

conjunction with universality of maximum velocity [2].

Treated as a priori by ssSM are 2 scale parameters: the foregoing particle scale,

regardable as counterpart to DQC’s Planck-scale path step [2], and the macroscopic scale

that the present paper introduces as an a priori DQC feature. The following section notes

that number theory may eventually render non-arbitrary the integral ratio of spacetime-

slice width to path step. Particle scale would thereby, like path step, become set by

the trio of universal parameters G, h and c, whose values Planck realized do not require

‘explanation’.

2. Milne Spacetime

The open interior of a forward lightcone—what we call ‘Milne spacetime’–is the product

of a lower-bounded one-dimensional ‘age space’ with an unbounded 3-dimensional ‘boost

space’. The spacetime displacement from the forward-lightcone vertex (whose spacetime

location is meaningless) to any spacetime point is a positive-timelike 4-vector (t, x ).

Defining the “age” τ of a spacetime point to be its Minkowski distance from lightcone

vertex—i.e., the Lorentz-invariant modulus (t2 – x 2c−2)
1/2 of its spacetime-location 4-

vector—the set of points sharing some common age occupies a 3-dimensional (global)

hyperboloid. Any point within such a hyperboloid may be reached from any other by a

3-vector boost. Once an origin within boost space is designated, an arbitrary spacetime

point is specified by (τ ,β), where β is the 3-vector boost-space displacement from the

selected origin to the point. Writing β = βn , where n is a unit 3-vector and β is positive,

t = τ cosh β, x = cτn sinh β. (1)

The spatial-location label β will in the following section and in Appendix A be identi-

fied within the path basis for DQC Hilbert space. Compatibility of age discretization with

Milne’s meaning for Lorentz invariance allows DQC’s spacetime to be temporally discrete

for its Feynman-path quantum dynamics even though spatially continuous. Discretization

occurs at two very different fundamental scales: (1) Any DQC Feynman path traverses
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a ‘slice’ of Milne spacetime—a slice whose width in age is macroscopic. (2) Within each

slice any (straight and lightlike) arc proceeds in Planck-scale age steps whose precise

extension is established by Reference (2) from action quantization.

Although consistency requires slice width to be an integral multiple of arc step, the

huge-integer ratio will not be addressed by the present paper—which ignores arc steps and

number theory. Before attending to path arcs this paper chooses to address the single-

preon Hilbert-space path basis. Nevertheless the termination of path arcs at exceptional

(ray-age) hyperboloids might be taken as defining the path basis of preon Fock space.

To each point of boost space associates a “local” Lorentz frame in which β= 0 i.e., a

frame defined up to a rotation by the point’s location 4-vector there being purely timelike.

Age change and time change are equal in local frame. In local frame an infinitesimal

spatial displacement dβ by dx=cτdβ. (A phenomenological meaning for ‘local frame’

resides in the approximate isotropy of cosmic background radiation observed in that

frame. This meaning parallels that of standard cosmology’s ‘co-moving coordinates’. )

The rotational ambiguity of local-frame meaning is related below to arbitrariness of the

origin of a 6-dimensional space. Origin location specifies not only a boost-space location

but also an attached orthogonal and handed (1, 2, 3) set of 3 reference axes which may be

parallel transported along a boost-space geodesic from the origin to any other boost-space

location.

The (3-parameter) global orientation ambiguity is accommodated by total relativity—

a DQC Fock-space restriction that requires rays to be globally rotationally invariant—

unchanged when a common Milne rotation is applied to all preons. Ray expectations

of Milne-boost generators are also globally invariant. Total relativity might be said to

mean that both the total momentum and the total angular momentum of the universe are

zero (6 conditions). The DQC universe is not only rotationally invariant but, associating

right-boost generators with infinitesimal spatial displacements at fixed age, the universe

is also ‘classically-invariant’ under (non-abelian) collective-preon boosts.

3. Path Basis; Preon-Coordinate Matrix

The Dirac ‘classical coordinate’ of a preon is a product of 6 real continuous labels prescrib-

ing a unimodular 2×2 matrix that we shall call the “preon-coordinate matrix”. Although

(in contrast to 4-vectors representable by hermitian 2×2 matrices) preon-coordinate ma-

trices are not linearly superposable, they may be multiplied either on the left or on the

right by unimodular 2×2 matrices. Right multiplication corresponds to Milne transfor-

mation of preon coordinate—a Lorentz transformation that if applied to all preons is

merely a change of basis origin and without significance. A right boost applied to an

individual preon is a displacement in (hyperbolic) Milne 3-space. A right rotation of a

preon has the familiar physics meaning designated by 3 Euler angles that refer to some

set of 3 orthogonal and handed reference directions fixed externally to the preon.

Left multiplication of a DQC preon’s coordinate matrix represents an ‘internal’ preon

modification–by this transformation’s reference to a ‘body-fixed’ preon axis. The reader
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is invited to recall the body-fixed symmetry axis of a nonrelativistic symmetrical top;

the velocity direction of a DQC preon (distinct from its momentum direction) may be

regarded as the direction of its symmetry axis. Change of wave function by left trans-

formation of path-basis coordinates, although incapable of altering either momentum

or angular momentum, may shift a preon’s energy, velocity and velocity helicity. (The

mass of an elementary particle—a special preon state–may be altered by left transfor-

mation.) The meaning of ‘preon’ depends on the inequivalence of two different SL(2,c)

representations–through left and right action on the preon-wave-function argument in the

path basis. Preon description relies on the commutability of any (self-adjoint) Hilbert-

space left-transformation generator with any right-transformation generator.

[The internal versus external meanings of left versus right transformations might be

interchanged. The assignment chosen in this paper conforms to an arbitrary choice made

by Gelfand and Naimark and our desire to maintain the notation of Reference (3). It

is pedagogically unfortunate that Wigner, working with the group SU(2)—an SL(2,c)

subgroup–made the opposite choice [8]. He represented rotation of a symmetric top

with respect to some external coordinate system, or vice-versa, by left multiplication

of the top-wave-function’s matrix argument. Right multiplication of the Wigner-defined

argument has capacity to vary the top’s angular momentum component in the direction

of its symmetry axis while leaving total angular momentum unaltered either in direction

or magnitude. Wigner right multiplication may change top (rotational kinetic) energy

while left multiplication lacks such capability, even though his left multiplication may

alter angular-momentum direction with respect to some fixed set of external axes.]

Because the doubly-covered Lorentz group is isomorphic to the group of unimodu-

lar 2×2 matrices—one must be careful to distinguish a preon-coordinate matrix from

a matrix that represents a coordinate transformation (either left or right). Although

coordinate matrices and transformation matrices both depend on 6 real parameters, pa-

rameter meanings are of course different. Analog is found in the 3 Euler angles that

coordinate a symmetrical top, as opposed to the 3 angles that label a rotation.

The coordinate matrix of Preon i or, alternatively, that of Arc i within a Feynman

path, will here be denoted by the (boldface) G-N symbol a i. Apart from the double

covering of rotations, the content of a i may be expressed through three Milne 4-vectors

represented by hermitian 2×2 matrices defined by the a i quadratic forms,

xi ≡ τ a†i ai = τ exp(−σ • βi), (2)

vi ≡ a†i (σ0 − σ3)ai, (3)

ei ≡ a†i (−σ1)ai, (4)

where σ≡ (σ1, σ2,σ3) is the standard (handed) set of Pauli hermitian traceless self-

inverse 2×2 matrices (determinant –1). The matrix σ3 is real diagonal while σ1 and

σ2 are antidiagonal, σ1 real and σ2 imaginary. The symbol • in (2) denotes the inner
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product of two 3-vectors. The symbol σ0denotes the unit 2×2 matrix. Although G-N

did not employ Pauli matrices, we have found them convenient. Otherwise we largely

maintain the notations of Reference (4). [In checking that (2), (3) and (4) transform

as Milne 4-vectors, the reader needs remember that although Milne transformation of a

coordinate matrix is multiplication from the right, Milne transformation of the hermitian

conjugate of a coordinate matrix is a left multiplication.]

The positive-definite hermitian matrix x i , with determinant τ 2 and positive trace,

represents [Formula (1) and Appendix A] a positive-timelike 4-vector whose components

are τ cosh βi, τ n isinh βi, where βi = βin i with n i a unit 3-vector and βi a positive

real number. We interpret the 4-vector represented by (2) as the spacetime displacement

of the preon’s location, or a location along some arc of a Feynman path, from the big-

bang forward-lightcone vertex—the ‘origin’ of Milne spacetime. The 3-vector βi is the

above-discussed location in Milne boost space.

Components of the 4-vectors v i and e i may be pulled from the 2x2 matrices (3) and

(4) in the usual way. The positive-lightlike 4-vector represented by the zero-determinant,

positive trace hermitian matrix v i is characterizable, in the path basis of a cosmological

ray, as the 4-velocity of Preon i, with unit timelike component in this particle’s local

frame–where β= 0. The symbol v i also represents the 4-velocity of an i-labeled Feynman-

path arc that passes through the 6-space point coordinated by a i.

The hermitian matrix e i (determinant –1) represents the Preon-i (unit-normalized)

spacelike transverse-polarization 4-vector that is (right) Lorentz orthogonal to x i and

v i. The same symbol may be used to denote the polarization of Arc i. Formulas (2,

3, 4) specify 4-vectors in that Lorentz frame—belonging to some arbitrarily designated

‘6-space origin’—in which the coordinate matrix is a i.

The unit 2×2 matrix σ0represents an origin of 6-space shared by all the preons

represented in a cosmological ray. When a preon-coordinate a iis a unit matrix, the

preon (classically) locates at the origin of boost space with its velocity in the (arbitrarily-

selected) 3 direction and its polarization in the 1 direction. The angle that specifies

polarization in the general case, in a plane perpendicular to velocity direction, spans

a 4π interval with the sign of a i reversing under any 2π continuous displacement of

polarization direction.

A path-basis single-preon wave function Ψ(a i) has a finite norm

∫
dai|Ψ(ai)|2, (5)

where the 6-dimensional invariant volume element da i(the Haar measure), is specified

immediately below for the G-N parameterization of a i. The norm (5) is invariant under

both of the above-discussed (right and left) coordinate transformations. Wave-function

norm is preserved by the transformation to G-N unirrep basis as well as to various other

bases we shall discuss.

G-N expressed the most general unimodular 2×2 coordinate-matrix a with a22 �= 0

through 3 complex labels s, y, z according to the product of 3 unimodular 2×2 matrices
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each representing an abelian 2-parameter subgroup of SL(2,c),

a(s, y, z) = exp(−σ3s)× exp(σ+y)× exp(σ−z), (6)

where σ± ≡ 1/2(σ1± iσ2). [G-N employed, rather than y, a complex label equal to

ye−s.] Because the spatial direction of the 4-velocity v is completely determined by z

(see Formula (3’) below) we shall refer to z as the “velocity coordinate”. Considerations

in the following two sections reveal it appropriate to call 2 Re s either the preon’s ‘longi-

tudinal coordinate’ or its ‘local time’ while y is its ‘transverse coordinate’. Calculation,

substituting (6) into (4), shows the angle specifying polarization direction (in a plane

transverse to velocity) to be 2 Im s. The polarization 4-vector e is independent of Re s.

The 6-dimensional volume element,

da = dsdydz, (7)

is invariant under a → Γ−1, with Γ a 2×2 unimodular matrix representing an external

(right) Milne transformation. It is also invariant under the internal (left) transformation

a →Γa, where Γ is a unimodular 2×2 matrix.

By the symbol dξ, with ξ complex, is meant d Re ξ× d Im ξ . Formula (6) implies

periodicity of Ψ (s, y, z) in Im s with period 2π, and the norm (5), with a corresponding

interval for Im s, is preserved by Fourier-series representation of Ψ dependence on Im

s. The norm is also preserved by Fourier-integral representation of Ψ dependence on

Re s over the real line. Such a 2-dimensional unitary Fourier transformation (not to be

confused with 6-dimensional transformations to G-N unirrep and energy-unirrep bases)

will immediately be discussed. The resulting basis we call “intermediate”.

4. Intermediate Basis–Diagonalizing Preon Energy, Velocity and

Velocity Helicity

The intermediate basis is labeled by the two (path-basis) complex-number symbols y,

z and two real (positive or negative) Milne-invariant (right Lorentz-invariant) labels–an

integer n and a continuous ω. In Dirac sense the label n is ‘conjugate’ to Im s while the

label ω is conjugate to Re s. Fourier-series representation of wave-function dependence

on Im s defines the discrete index n that, before its correlation with ‘extra-Lorentz’

discrete Hilbert-space labels, may take any integral value (positive, negative or zero).

Fourier-integral representation of wave-function dependence on Re s analogously defines

the continuous label ω that spans the real line. We make the unitary transformation,

Ψ(s, y, z) = Σn ∫ dω exp(−in Ims− i ω Re s)ψn,ω(y, z), (8)

the integer label n prescribing in � units, as shown below, twice the preon velocity

helicity. The label ω, after consideration of DQC Feynman-path arcs, will be seen to

prescribe twice preon (total) energy in � /τ units. The norm (5) equals
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(2π)−2Σn∫dω dy dz |ψn,ω(y, z)|2. (9)

Multiplying the coordinate matrix a from the left by the unimodular matrix λ0 ≡
exp(–σ3s0), so that s changes tos+s0 with y and z remaining fixed, effectuates a rotation

of polarization by an angle 2 Im s0around velocity direction along with a shift of preon

boost-space location along velocity direction by 2 Re s0. The intermediate-basis wave

function ψn,ω(w, z) is seen from (8) to be changed, under λ0left multiplication, merely

by the phase factor exp(–inIm s0–iω Re s0). For pure rotation (i.e., Re s0 = 0) by an

angle φ = 2 Im s0about velocity direction, this phase factor is exp(–in φ/2)–hence our

characterization of n’s meaning.

Two self adjoint operators on the G-N Hilbert space generate the foregoing transfor-

mations. In the path basis these operators are

J3L
∧ =

1

2
i ∂/∂ Im s, (10)

K3L
∧ =

1

2
i ∂/∂ Re s. (11)

J∧3L generates (at fixed Re s, y and z, which the following section shows to imply fixed

preon spatial location) rotation of preon polarization about its velocity direction while

K∧
3L generates (at fixed velocity and polarization as well as fixed transverse location)

spatial displacement in this direction. According to (8) the eigenvalues of J∧3L are 1/2n

while those of K∧
3L are 1/2ω. It will be seen later that J∧3L andK∧

3L are among the set of

6 commuting self-adjoint operators whose real eigenvalues label the energy-momentum

unirrep basis. That is, n and ω are labels both of the energy-momentum unirrep basis

and the intermediate basis.

Odd-even n distinguishes fermion from boson inasmuch as increasing the value of Im

s by π with Re s, y, z unchanged reverses the sign of the preon-coordinate matrix a .

Writing Ψ(a) = Σn Ψn(a), Formula (8) implies

Ψn(−a) = (−1)nΨn(a). (12)

DQC Hilbert space correlates a 2-valued handedness label with the sign of n, in

restricting any preon sector to a single value of n = n . A fermionic preon has

n = ±1, a vector-bosonic preon has n = ±2 and a gravitonic preon n = ±4. Path-

carried sector-specifying discrete labels and Milne-invariant path action perpetuate this

reduction of DQC Hilbert space.

The continuous label ω, related to inertial and gravitational action through the

positive-energy operator defined in Appendix C, (2)may appropriately be called ‘preon

frequency’ or, in units specified below, ‘preon energy’. Both preon velocity-helicity and

preon energy, as well as preon momentum-helicity and preon ‘momentum magnitude’,

will be shown to be Milne (right-Lorentz) invariant. Energy and momentum-magnitude

labels enjoy the meaning familiar for these terms in the preon’s local frame.
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The following section shows Re s to increase, along any arc of a Feynman path, with

unit (local-frame) age derivative of the local time, while the remaining 5 path-basis labels

remain fixed. Appendix C associates the label ω to the energy of any ‘beginning arc’—one

which contacts that ray at the lower boundary of the spacetime slice occupied by this

arc. The ray’s ‘partial-expectation’ of the positive-energy operator defined in Appendix C

establishes the energy of any path arc originating at this ray. In the paper’s penultimate

section the full expectation of a certain self-adjoint operator function ofK?
3L prescribes the

non-fluctuating near-future energy-momentum density that, by determining gravitational

action (for ray propagation to the succeeding ray), constitutes an aspect of ‘mundane

reality’. The (indefinite) energy operator �/τK∧
3L is diagonal (with eigenvalues �ω/2τ)

both in the intermediate basis and in the energy-momentum unirrep basis, although not

in the path or G-N unirrep bases.

5. Path Arcs

Each (positive-lightlike) arc of a DQC Feynman path moves (in Planck-scale age steps
(2) ) through the 7-dimensional continuous space coordinated by τ and the 3 complex

variables s, y,z. Because the Pauli-matrix identity

σ0 =
1

2
(σ0 + σ3) +

1

2
(σ0 − σ3), (13)

expresses the unit matrix as the sum of two zero-determinant unit-trace hermitian

matrices, Formulas (2) and (6), by straightforward calculation, imply any spacetime lo-

cation (with respect to Milne-lightcone vertex)to be the sum of two “oppositely-directed”

positive-lightlike 4-vectors:

x = τ [|y|2e−2Re sh(z+y−1) + e2Re sh(z)]. (14)

The symbol h(ς) denotes a zero-determinant hermitian positive-trace 2×2 matrix,

h(ς) ≡ (σ0 + ς∗σ+)σ−σ+(σ0 + ςσ−), (15)

a bilinear function of a direction-specifying complex variable. The second term within

the square bracket of (14) relates to the following formula, deducible from (3), for the

positive-lightlike 4-velocity (unit time-component in local frame) of a preon or arc:

v = 2e2Re sh(z). (3′)

Notice absence from (14) of any dependence on Im s.

Formula (14) reveals two distinct categories of positive-lightlike fixed-y, fixed-ztrajectory

through 7-dimensional (τ , a) space. In one category the first term of (12) is age indepen-

dent while the second’s magnitude increases with age. In the other category the second

term is fixed while the first’s magnitude increases. We call the former category F and

the latter B . Along an F trajectory e2Res is proportional to τ , while along a B trajectory

e2Res is inversely proportional to τ . DQC achieves unit age derivative of local time along
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any Feynman path by requiring every arc to lie along an F trajectory–identifying the

derivative with respect to age of local time as τd(2Re s)/dτ .

An F trajectory is identified by the two complex dimensionless labels z, y and one

real label τF ≡ τ e−2Resof time dimension. Formula (14F ) represents the most general

path spacetime trajectory by a hermitian-matrix that is a second-degree polynomial in

age:

xF
z,w(τ) ≡ τF |y|2h(z + y−1) + τ 2τ−1

F h(z). (14F )

The age-independent first term of (14F ) –an “initial displacement” from the lightcone

vertex that depends on both z and y—locates the F trajectory’s zero-age origin on

the (3-dimensional) Milne forward-lightcone boundary. Any arc, beginning and ending

along some such trajectory, lies inside the lightcone. The second term of (14F ), positive

lightlike like the first term but in the opposite spatial direction and independent of y,

leads from the trajectory’s big-bang origin to the age-τ spacetime point. The second

term’s direction is determined entirely by z.

6. G-N Unirrep Basis

The unitary irreducible SL(2,c) representation found by Gelfand and Naimark provides

a Hilbert-space basis, alternative to the path basis, that we shall call the ‘G-N unirrep

basis’–comprising functions of 2 real labels and 2 complex labels. A norm-preserving

transform connects path and G-N unirrep bases.

The two real labels prescribe eigenvalues of two self-adjoint operators that represent

Casimir-quadratics in the generators of either right or left Lorentz transformations—

polynomials invariant under both right and left 6-parameter groups (commuting with all

12 generators). If we denote the trios of right-rotation and left-rotation generators by

the 3-vector boldface operator symbols J ∧R, J ∧L and the trios of boost generators by the

symbols K ∧
R, K ∧

L the Casimir, K ∧
R •J ∧R = K ∧

L • J ∧L, has eigenvalues (ρ/2) (m/2) while

the Casimir, K ∧
R•K ∧

R− J ∧R•J ∧R= K ∧
L•K ∧

L− J ∧L •J ∧L, has eigenvalues (ρ/2)2 - (m/2)2

+1. The label m takes positive, negative or zero integer values that are shown below to

correspond to twice preon helicity (angular momentum in momentum direction). Bosonic

preons have even values of m while fermionic preons have odd. The second Casimir label,

denoted by the symbol ρ, takes continuous real non-negative values. In �/cτ units, ρ/2

will be called the preon’s (local-frame) ‘magnitude of momentum’.

The remaining labels on which a preon’s G-N unirrep-basis wave function depends

are 2 complex variables, z’ andz1, the former right-invariant and the latter left invari-

ant. In Reference (4) the right-invariant variable z’ is denoted by the symbol z; we

have here added a prime superscript to avoid confusion with the path-basis label z. The

left-invariant complex label z1 prescribes in a cosmological ray the direction of preon

momentum in a sense similar to that above in which the path-basis complex variable

z prescribes velocity direction. Loosely speaking, the complex variable z’ may be un-

derstood as representing the difference between momentum and velocity directions. A
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precise meaning for z’ resides in the difference between ρ and ω and the difference be-

tween m and n. In a sense similar to that of Dirac, half these differences will be seen

‘conjugate’, respectively, to ln |z ’| and arg z ’.

The set (z’, m, ρ, z1) of 2 real-Casimir and 2 complex directional labels we shall denote

by the shorthand index b, the G-N unirrep-basis wave function Φ(b) being a transform

of the path-basis wave function Ψ(a). The (right-left-invariant) G-N unirrep-basis norm

is ∫
db|Φ(b)|2, (16)

where the symbol ∫ db means (with m assigned some ‘preon-type’ value)∫
db ≡ (1/2π)4

∫
dρ(m2 + ρ2)

∫
dz′

∫
dz1, (17)

the integration over dρ running from zero to + infinity. For Preon Sector of DQC

Hilbert space the value of m is taken equal to n–one of the 6 options ±1, ±2, ±4.

The norm-preserving transform is achieved by an integration over the 4-dimensional

manifold regularly representing those 2×2 unimodular matrices—a 4-parameter SL(2,c)

subgroup—that have the form

k(λ, y) ≡ exp(−σ3lnλ)× exp(σ+y), (18)

with λ and y almost-arbitrary complex numbers (λ �=0). The 4-dimensional volume

element

d�k = |λ|−2dλdy (19)

is ‘left-invariant’ in the sense that an integral ∫ d�k f(k) over some function f(k)

of the matrix k equals ∫ d�k f(k 0 k), with k 0 any fixed matrix within the subgroup.

The transform from path to G-N unirrep basis is

Φ(b) =

∫
d�kαmρ(k)Ψ(z ′−1 kz 1), (20)

where a bold-faced z symbol in (20) is to be understood as the 2×2 unimodular

matrix exp (σ−z). The function αmρ(k)—analog of the Fourier transform’s exponential

function and a cornerstone of G-N’s analysis—is given by

αmρ(k) ≡ |k22|−m+iρ−2km
22 = |k22|−2exp(im arg k22 + i ρ ln| k22 |). (21)

Note that αmρ(k) is independent of the parameter yin (18), depending only on k22 =

λ. Although (20) is written in a form facilitating left transformation, an alternative form

facilitates right transformation. Our choice above is arbitrary—motivated by desire to

maintain the notation of Reference (4). Later the alternative form will also be invoked.

The G-N reverse transform, expressed in a notation where the path-basis wave-

function is understood not as a function of a unimodular matrix a but as a function

of the three complex labels s, y, z defined by (6), is
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Ψm(s, y, z) = (1/2π)4 ∫ dρ(m2 + ρ2) ∫ dz1|λ′|−m−iρ+2λ′∗mΦ(m, ρ, ž, z1), (22)

the symbols λ’ and ž denoting quotients that depend on z1 as well as on s, y, z,:

ž ≡ esλ′(z1 − z), λ′ ≡ es/[1− (z1 − z)y]. (23)

The right-invariant G-N unirrep-basis complex label z’ is constrained in (22) to the

value ž, vanishing when momentum and velocity directions are parallel. The point re-

lation (23)–two real point relations–between path-basis and G-N unirrep-basis labels,

‘entangled’ by y involvement, enjoys a ‘disentangled’ counterpart in our use below of

the intermediate-basis labels n, ω as also labels on the energy-momentum unirrep basis.

Disentanglement makes the latter basis appropriate for specification of preon sectors.

7. External (Right) and Internal (Left) Transformations

Let us denote by the symbol Γ−1 a 2×2 unimodular matrix applied on the right of a co-

ordinate matrix so as to effectuate an “external” (Milne) Lorentz transformation Ψ(a1,

a2. . . ) → ΨΓ(a1, a2. . . ) ≡ Ψ(a1Γ
−1, a2Γ

−1, . . . ) of a path-basis cosmological wave

function –a sum of products of single-preon functions. A corresponding transformation is

induced in any Hilbert-space basis, although generally a wave-function factor accompa-

nies transformation of wave-function argument. (Absence of such factor characterizes the

group-manifold path basis). Here ignored are discrete coordinates such as handedness,

electric charge and color that are invariant under both right and left coordinate trans-

formation. Although Milne’s cosmological principle associates in DQC to global right

transformation, the present section addresses the effect on an individual preon function

of either (external) right or (internal) left transformation.

In terms of the 3 complex path-basis coordinates s, y, z the right transformation is

Ψ(s, y, z)→ Ψ(sΓ, yΓ, zΓ), (24)

where by straightforward calculation of aΓ−1 with a given by (6),

zΓ = (Γ22z − Γ21)(−Γ12z + Γ11)
−1, (24a)

yΓ = (−Γ12z + Γ11)[(−Γ12z + Γ11)y − Γ12], (24b)

sΓ = s + ln(−Γ12z + Γ11). (24c)

Notice how right transformation of z is independent of the variables s, y, while all

right coordinate transformations involve z and right transformation of s(y) is independent

of y(s). [Taken alone, (24a) provides a representation of SL(2,c) by action of this group

on the points of a complex plane.]

Notice further how, with respect to the complex coordinate s, the (24c) right transfor-

mation is merely a z-dependent displacement, implying right invariance of the intermediate-

basis labels n and ω. Right Lorentz transformation of the intermediate basis (with labels
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n, ω, y, z) alters the wave-function arguments y and z according to (24b) and (24a)

while leaving n and ω undisturbed although multiplying the wave function by a phase,

dependent on n, ω and z, that is deducible from (8) and (24c).

Milne (right) transformation induces, by calculation according to (20), in the G-N

unirrep basis the transformation

Φ(b)→ ΦΓ(b) = αr
mρ[(−Γ12z1 + Γ11)

−1]Φ(m, ρ, z′, zΓ
1 ), (25)

where zΓ
1 is the polynomial quotient (24a) with z1 in place of z, and

αr
mρ(k22) ≡ |k22|4αmρ(k22). (26)

Both the momentum and the angular momentum of a preon may be changed (relative

to a fixed origin of Milne 6-space) by right transformation, but helicity and ‘magnitude

of momentum’ are invariant as also (we have emphasized above) is energy and velocity

helicity. Right-Lorentz transformation leaves undisturbed the complex argument z’ of

the G-N unirrep-basis wave-function.

The individual-preon transformation from the left in the G-N unirrep basis is as simple

as (25). Left transformation alters wave-function dependence on the “internal” parameter

z’ while dependence on momentum direction z1 is unchanged. One finds

Φ(b)→γ Φ(b) = αmρ(−γ12z
′ + γ11)Φ(m, ρ,γ z′, z1), (27)

where

γz′ = (γ22z
′ − γ21)(−γ12z

′ + γ11)
−1. (28)

Neither the momentum nor the angular momentum (nor of course the helicity) changes,

as the 6 coordinates (path-basis labels) of some preon are left-shifted (other preons re-

maining unshifted). Left transformation of Preon i may change not only its spatial

location and local time but its energy, its velocity and its velocity helicity.

The earlier-considered special left transformation γ = λ0, where λ0is the unimodular

matrix exp(–σ3lnλ0), preserves preon velocity while prescribing a rotation around velocity

direction and a longitudinal shift of preon location along this direction (γ12= γ21 =0 and

γ22= γ−1
11 = λ0). One finds, from (27) and (28),

γΦ(m, ρ, z′, z1) = α−1
mρ(λ0)Φ(m, ρ, λ2

0z
′, z1). (29)

Although momentum and angular momentum remain undisturbed, there is λ0 “rescal-

ing” of the variable z’. We have seen earlier that preon energy and velocity helicity are

unchanged by the foregoing transformation. A more general γ21 =0 left transformation,

with arbitrary γ12 and γ22,continues to preserve velocity while shifting preon spatial

location transversely as well as longitudinally. Here, in the path basis,

γz = z, (30a)
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γy = y + γ12γ22e
2s, (30b)

γs = s + lnγ22. (30c)

In this case preon energy and velocity helicity are affected if (as finite norm renders

unavoidable) the wave function varies with changing y. Extension of the path-basis

formulas (30) to the most general left transformation, where the velocity coordinate z

also may change, is straightforward. [Formula (30b) is relevant to the elsewhere-discussed

transverse Planck-scale 4-stranded (‘cable’) structure of a path arc.]

8. Momentum, Angular-Momentum 6-Vector

K i∧
R and J i∧

R , under Milne transformation behaves as a second-rank antisymmetric

tensor–a ‘6-vector’–that we denote by the symbol J i∧
μυ . The two preon Casimirs are

invariants bilinear in J i∧
μυ . Preon momentum (in certain units) is represented by K i∧

R

and preon angular momentum by J i∧
R .

Because DQC path action is Milne-transformation invariant, the tensor J i∧
μυ represents

6 ‘conserved’ preon attributes. The sum J∧μυ = ΣiJ
i∧
μυ of all preon 6-vectors is the total

momentum and angular momentum of the universe. DQC recognizes Mach’s principle

as implying universe rotational invariance–a quantum condition of zero total angular

momentum. It is well known that, even though the 3 angular-momentum generators do

not commute with each other, a quantum state may be a simultaneous eigenvector of

angular-momentum components if the eigenvalue is zero for all three.

Because Hilbert-space vectors have finite norm, the quantum-theoretic notion of zero

total momentum for the universe is problematic, but not the classical notion. In DQC

certain self-adjoint-operator expectations over a cosmological ray play a central role,

defining ‘mundane reality’ and specifying arc energy. We postulate zero expectation for

all 3 total-universe-momentum operators—a condition sustained by DQC dynamics.

9. Energy-Momentum Unirrep Basis; Parity Reflection

Returning attention to an individual preon, the set of 4 self-adjoint Hilbert-space oper-

ators, J∧3L, K∧
3L, J∧3R, K∧

3R (out of a 12-generator algebra) not only commute with each

other but also with the pair of Casimir self adjoint operators—bilinears of group-algebra

elements that commute with all group-algebra elements. The pair of G-N unirrep-basis

labels m and ρ together specify Casimir eigenvalues. These two labels attach to any

unirrep, including the energy-momentum unirrep basis, whose 6 labels we now address.

The associated 6-csco supplements the above generator quartet by the Casimir pair.

The symbols m, ρ, n and ω, for four energy-momentum unirrep-basis labels, have

already been introduced—specifying, respectively, the eigenvalues of the Casimir pair

and of J∧3L and K∧
3L. A meaning for n and ω with respect to preon velocity has been

achieved in the path basis through left-group action on a velocity eigenvector. Appendix

B shows how these two labels are unitarily equivalent to the complex label z’ on the G-N
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unirrep basis. The two remaining labels on the energy-unirrep basis are the eigenvalues

of J∧3R and K∧
3R, which Appendix B shows are equivalent to the complex label z1.

The self-adjoint operator J∧3R generates rotations about some (arbitrarily-assigned)

external 3-direction whileK∧
3R generates spatial displacements in this direction. The

eigenvalues of J∧3R span the same range as those of J∧3L and will be denoted by using

the right integer symbol m3 to accompany the left integer symbol n. (In both cases a

factor 1/2 connects integer symbol to generator eigenvalue.) Similarly the right continuous

symbolp3(spanning the real line and, with a factor 1/2, designating the eigenvalue ofK?
3R)

will accompany the left continuous symbol ω. The complete set of energy-unirrep-basis

labels is then n, ω, m, ρ, m3, p3.

[Our attachment of the subscript 3 to right-generator eigenvalues emphasizes the

arbitrariness of the designated external direction. The left labels n and ω refer to the

preon’s velocity direction. It is because Pauli arbitrarily used the subscript 3 to designate

a diagonal, rather than antidiagonal, 2×2 hermitian traceless self-inverse matrix that this

subscript in Formulas (3) and (6) became associated to the velocity direction. By ignoring

Pauli, G-N avoided notational awkwardness.]

One immediate application of the energy-unirrep basis is to define ‘preon parity re-

flection’ as sign reversal for n, m and p3 with ω, ρ and m3 unchanged. Helicities and

momentum direction reverse, while energy, momentum magnitude and angular momen-

tum are unchanged. Implied is velocity-direction reversal. Another immediate application

is to the definition of DQC Hilbert-space sectors.

10. Path-Arc-Defined Hilbert-Space Sectors

Any preon shares with a path-contacting arc certain spacetime-independent (‘extra-

Lorentz’) discrete labels, mostly ignored by the present paper, that in any of the 4 DQC

bases define preon sectors for photons, gravitons, leptons, quarks and weak bosons of 3

generations, 3 colors, 2 weak isospins, 2 chiralities and 2 values of boson handedness. The

latter path label divides a photon or graviton sector into a pair of subsectors. (Although

gluons are unrepresented in the DQC Hilbert space, certain path arcs that never contact

a ray carry gluonic labels.) The DQC Fock space is constrained so that (path-defined)

Sector has, in the energy-momentum unirrep basis, a unique (twice) helicity n = m = n

–i.e., equal components of angular momentum in velocity and momentum directions.

Sector then needs only 4 energy-momentum unirrep-basis labels ω, ρ, m3 and p3—one

discrete (m3) and three continuous (ω, ρ, p3) ‘spacetime’ labels –each of the continuous

trio spanning some portion of the real line.

The labels m3 and p3 determine, respectively, the components of preon angular mo-

mentum and momentum in the 3-direction and not only depend on the choice of this

direction but are altered by right (Milne) transformations. We have above discussed how

a preon’s momentum-angular-momentum 6-vector behaves under right transformation.

The two other labels, ω and ρ, are invariant under the 6-parameter group of (Milne-

interpretable) right Lorentz transformations–rotations and spatial displacements—as well
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as under a (sector-changing) parity reversal that changes the signs of n and p3. We have

called (half the values of) ω and ρ, respectively, the preon ‘energy’ and ‘momentum

magnitude’ in τ -dependent units—both these terms to be understood in the preon’s local

frame.

11. Positive-Energy Elementary-Particle Preon Wave Functions

Certain special preon wave functions with sharply-defined positive energy are inter-

pretable as Standard-Model elementary particles or gravitons. There is qualitative differ-

ence between a preon wave function that represents a photon or graviton and a preon wave

function that represents any other type of elementary particle—which we characterize as

‘massive’.

A photon or graviton is a state reachable by right transformation of a single-preon

state that in the energy-momentum unirrep basis has ω = ρ =p3 and n = m = m3(= n).

An arbitrary (fixed) positive energy specifies a Hilbert subspace in one of four discrete

preon sectors–n = ±2, ±4–each such sector-subspace representing the right Lorentz group

(of Milne transformations). The subspace is isomorphic to normed functions over the

complex z0plane with the measure dz 0 and an origin corresponding to the foregoing

special state. The most general ‘massless particle’ is a superposition of states separately

labeled by n, ω, and z0, where z0designates a direction with respect to an externally-

specified direction.

For a massive elementary particle at rest (in local frame) the ‘spin-directed’ preon

wave function with m3= |n | is parity symmetric—with zero expectation for momentum,

velocity and helicity and with (non-fluctuating) ω > 0. For a Standard-Model massive

particle the expectation of (fluctuating) ρ is at Planck-mass scale–hugely larger than the

particle-mass scale of (non-fluctuating) ω. Right rotations generate the otherm3 values

without changing the foregoing collection of zero expectations. The fluctuating velocity

and momentum directions are not parallel to each other although rigidly correlated by the

value of particle mass–tending to be almost orthogonal for ω << ρ. (DQC elementary-

particle rest mass does not require Higgs scalars.)

Einstein boosts–transformations in Milne local frame from at-rest to moving massive-

particle wave functions–have been specified in the ssSM physics approximation to DQC

[6]. The status of Einstein-Poincaré boost as an approximate symmetry of the universe

at macroscopic and particle scales requires further study. Reference (6) finds essential

here the dilation invariance of non-gravitational, non-inertial action.

12. Mundane Reality

The cosmological ray at the lower boundary of some spacetime slice prescribes within

that slice, through expectations of certain self-adjoint operators, nonfluctuating (’classi-

cal’) current densities of conserved electric charge and energy-momentum together with

associated electromagnetic and gravitational (Lorentz-gauge) ‘tethered’ potentials that
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specify the non-radiation electromagnetic and gravitational action for the Feynman paths

traversing this slice. (Path-action-contributing vector and tensor classical radiation po-

tentials will be addressed by another paper.) We refer to these current densities, which

enjoy one to one correspondence with tethered potentials–hence the adjective ‘tethered’–

as ‘mundane reality’. Heisenberg uncertainty is absent from DQC—dispensing need for

‘many-worlds’ interpretation.

DQC prescription of the electromagnetic tethered vector potential (in Lorentz gauge)

employs a quotient of real polynomials of the 6-csco whose continuous eigenvalues label

the path basis. As in our treatment above of these eigenvalues, it proves notationally

economical to represent the continuous-product Preon-i 6-csco by a unimodular 2×2

complex matrix—a matrix aiˆ of 8 commuting self-adjoint operators, two of which are

determined by the remaining six. (The 12, 21 and 22 matrix elements may be regarded

as the 6 independent operators, with the 11 matrix element an operator pair determined

by the complete operator sextet.)

Consider a pair of self-adjoint hermitian 2×2 matrix operators x τ
i ˆ and v iˆ which

have the real eigenvalues represented by the hermitian 2×2 matrices (2) and (3). That is,

the 8 self-adjoint commuting operators represented by the symbols x τ
i ˆ and v iˆ are real

bilinears of the 8 self-adjoint commuting operators represented by the symbol a iˆ. The

operator bilinear coefficients are the same as those of the eigenvalue bilinears. Similarity

transformation of x τ
i ˆ and v iˆ by our unitary representation of the right Lorentz group

allows these operators to be recognized as a pair of commuting Milne 4-vectors whose

timelike components are positive. It follows further, if the symbol denotes the Lorentz

inner product of two 4-vectors, that x τ
i ˆ•x τ

i ˆ = τ 2Iˆ, where Iˆ is the unit-operator

(commuting with all operators), and v iˆ • v iˆ = 0. That is, the 4-vector x τ
i ˆ is positive

timelike, while v iˆ is positive lightlike.

We define a (right-Lorentz) 4-vector Preon-i self-adjoint operator τ
i (x )ˆ that depends

on the preon’s electric charge Qi and on a spacetime-location 4-vector x , with x • x >

τ 2, according to the following operator quotient of a 4-vector and a scalar,

Aτ
i (x )ˆ ≡ Qi v iˆ /v iˆ • (x Iˆ -x τ

i ˆ). (31)

For x within the spacetime slice following the exceptional age τ , we call this operator

the ‘electromagnetic vector potential tethered to Preon i’. The expectation τ
i (x ) of (31)

over the cosmological ray at age τ is the contribution from Preon i to the (full, Lorentz-

gauge) tethered vector potential τ (x )—the sum over i of τ
i (x ). Because the preon-velocity

4-vectors v iˆ are lightlike, the 4-divergence vanishes for the spacetime-dependent vector-

potential-operator (31), as well as for the τ -ray expectation thereof and for the full (sum

over i) classical tethered vector potential.

The classical tethered electromagnetic potential contributes (often importantly) to the

action of Feynman paths traversing the near future of the τ -ray. Further, the Dalember-

tian of (non-fluctuating) τ (x ) gives the (divergence-less) 4-current density of conserved

electric charge within the slice–one component of DQC ‘mundane reality’.

A Preon-i-generated tethered gravitational-tensor potential may analogously be spec-
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ified through a discrete-spectrum symmetric-tensor pseudo-self-adjoint operator [9] that

parallels (31) but is proportional to the energy rather than to the electric charge of

Preon i. A separate paper will define pseudo-self-adjoint single-preon operators corre-

sponding to a positive-lightlike energy-momentum 4-vector and to the thereby-generated

symmetric-tensor tethered gravitational potential. Summing the potential operator over

all preons and taking the τ–ray expectation gives the classical tethered gravitational po-

tential within the near future of this ray. The gravitational potential’s Dalembertian

divided by gravitational constant is the current density of conserved energy-momentum

within the slice.

Notice that the photons and gravitons of a cosmological ray contribute to the energy-

momentum tensor although not to the electric-charge current density. The former (ten-

sor) current density and the latter (vector) current density, both conserved, collectively

comprise what we call ‘mundane reality’.

Conclusion

Explored has been a Hilbert space for preons–elementary quantum-theoretic entities in

Dirac sense that populate Milne spacetime. Our proposal, based on the right-left Lorentz

group rather than the Poincaré group, is suitable for quantum cosmology although not

immediately for physics. Our Hilbert space is defined only at macroscopically-spaced

exceptional universe ages. The results here support the gravitational-action proposals of

Reference (2) and suggest a sliced-spacetime Higgs-less revision of the particle-physics

Standard Model—the revised model being related to the present paper’s cosmological

theory by group contraction, as reported in Reference (6).

Appendix A: A Pair of Real 3-Vector Path-Basis Labels

The most general (6 real-parameter) coordinate matrix of Preon i or Arc i may be ex-

pressed, rather than by Formula (6) of the main text, through a 3-vector boost βi together

with a 3-vector rotation χi(0 ≤ |χi| ≤ 4π) such that the coordinate matrix is

a i = exp(iσ • χi/2)× exp(−σ • βi/2). (A.1)

The right factor in (A.1) is a hermitian unimodular matrix while the left factor is

a unitary unimodular matrix. (Any square matrix may be written as the product of a

hermitian matrix and a unitary matrix.) The choice of matrix order in (A.1) correlates

with the definition (2) in the main text of the preon’s spacetime-location 4-vector. The

3-vector parameter βi in (A.1) is the location in Milne boost space of Preon i or Arc i.

When the 6-space origin is chosen to coincide in boost space with this location–i.e., when

βi = 0, the 3-vector χi appearing in (A.1), or an equivalent set of 3 angles,

0 ≤ θi ≤ π, 0 ≤ φi ≤ 2π, 0 ≤ φi′ ≤ 4π, (A.2)
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specifies Preon-velocity direction by the polar coordinates θi, φi and transverse po-

larization direction by the angle –1/2 (φi′+ φi). The relation between χi and θi, φi, φi′
is

exp(iσ • χi/2) = exp(iσ3φi′/2) exp(iσ1θi/2) exp(iσ3φi/2). (A.3)

The invariant 6-dimensional volume element is da i = dχidβi with

dχi = sinθi dθi dφi dφi′, dβi = sinh2βi dβi dn i, (A.4)

the symbol dn standing for (2-dimensional) solid-angle element.

The parameterization (A.1) is convenient when relating 3 different arcs to each other

at a Feynman-path vertex. The different arcs at a vertex share the same β but have

independent χ. The G-N complex coordinates are convenient for arcs between (rather

than at) vertices as well as for wave functions contacted by arcs.

Appendix B: Eigenvectors of the Energy-Momentum Csco.

Formula (25), specifying the outcome of right Lorentz transformation in the G-N unirrep

basis, reveals in this basis the eigenfunctions of the two commuting right Lorentz-group

generators J3Rˆ and K3Rˆ. If Γ12= Γ21= 0 so that Γ11= Γ−1
22 —the right (Lorentz) trans-

formation here being a boost in (some arbitrarily chosen) 3 direction combined with a

rotation about this direction–we find

ΦΓ(b) = |Γ22|2exp(imarg Γ22 + i ρ ln |Γ22|)Φ(m, ρ, z′, Γ2
22 z1). (B.1)

Formula (B.1) determines both the eigenvalues and the eigenfunctions of the operators

that generate right rotations and boosts with respect to the 3 direction. Writing Γ22 = eε

and ΦΓ(b) =Φε
m,ρ,z′ (z1), Formula (B.1) becomes

Φε
m,ρ,z′(z1) = e2 Re ε+im Im ε+i ρRe εΦm,ρ,z′(e

2 εz1). (B.2)

A function of z1 proportional to |z1|−1exp (i�1arg z 1 + i ρ1ln| z 1|) is transformed

by (B.2) into itself multiplied by exp[i(m+2�1)Im ε +i(ρ+2ρ1)Re ε]. Such a function

(not normalizable but admissable in the sense of ‘rigged Hilbert space’)–an eigenvector

of bothJ3Rˆ andK3Rˆ—is a state where components in the 3 direction of both angular

momentum and of momentum are sharply defined. The eigenvalues of J3Rˆ are seen to

be m/2 + �1 ≡ m3/2 while those of K3Rˆ are ρ/2+ ρ1 ≡ p3/2.

A function of z1 that vanishes except in the neighborhood of z1= 0 may, according to

(B.2), loosely be described as a momentum-direction eigenvector–with preon momentum

direction in the externally-prescribed 3-direction. In this case Formula (B.2), with Re ε =

0, supports our calling m/2 ‘helicity’—component of angular momentum in the direction

of momentum. But for this wave function no individual component of momentum is

sharply defined.
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The curvature of Milne 3-space renders non-commuting the trio of self-adjoint ‘right’-

boost generators that represent the 3 components of a preon’s momentum. It is never-

theless reasonable to call ρ/2 the ‘magnitude of preon 3-momentum’ in a sense similar to

the language which in nonrelativistic quantum theory calls the label j the ‘magnitude of

angular momentum’. The relation between self-adjoint operators,

KRˆ • JRˆ = (ρˆ/2)(mˆ/2), (B.3)

is here helpful to keep in mind, together with the helicity interpretability of m/2.

Although the most general internal single-preon transformation of a ray from the

left, Ψ(a1, a2. . .a i. . . )→Ψ(a1, a2, . . . γia i. . . ), is less transparent than (24) when

expressed in si, yi, zi coordinates, the transformation induced in the G-N unirrep basis

is as simple as (25). The difference from (25) is that left transformation alters wave-

function dependence on the “internal” parameter z’i while dependence on preon helicity

and momentum magnitude and direction (mi, ρi, z1i) is unchanged apart from an overall

factor. Dropping the subscript i one finds, matching Formula (25),

Φ(b)→γΦ(b) = αmρ(−γ12z
′ + γ11)Φ(m, ρ,γ z′, z1), (B.4)

where

γz′ = (γ22z
′ − γ21)(−γ12z

′ + γ11)
−1. (B.5)

Neither the magnitude nor the direction of momentum changes nor does helicity, as the

coordinates (path-basis labels) of some preon left shift from one set of values to another

(the coordinates of other preons remaining unshifted). Change in Preon i is manifested

by change in the z’i dependence of its G-N unirrep-basis wave function. Accompanying

the earlier-considered special internal shift γ= λ0, where λ0 is the unimodular matrix

exp(–σ3lnλ0) that prescribes an orientation rotation around velocity direction together

with a longitudinal shift of preon location along velocity direction (γ12= γ21 =0 and γ22=

γ−1
11 = λ0), one finds from (B.4),

γΦ(m, ρ, z′, z1) = α−1
mρ(λ0)Φ(m, ρ, λ2

0z
′, z1). (B.6)

Here, although momentum and helicity (together with wave-function norm) remain

undisturbed, there is λ0 “rescaling” of the variable z’.

Because a function Φ(m, ρ, z’, z1) with z’ dependence of the same form as that dis-

cussed for z1 , immediately following (B.2) above, is an eigenvector of J3Lˆ andK3Lˆ, it is

possible simultaneously to diagonalize the six self-adjoint operators whose eigenvalues are

determined by the labels n, ω, m, ρ,m3,p3–the main-text labels of the energy-momentum

unirrep basis.
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Appendix C: Starting-Arc Energy at a Spacetime-Slice Lower

Boundary

A ‘partial expectation’ of the discrete-spectrum Preon-i positive-lightlike 4-vector energy-

momentum pseudo-self-adjoint operator over the ray at some exceptional age τ establishes

the energy of a path arc that contacts this preon. ‘Partial expectation’ means at fixed

values of Im s i, yi, zi, as well as of all coordinates of all other preons. The arc in question

is characterized by fixed values of Im s i,yi, zi but not of Re s i.

Shifting local frame in passage along any arc means that local-frame preon energy

decreases in inverse proportion to age as age increases (Milne redshift), but measurable

redshift–over age intervals much longer than the macroscopic width of a spacetime slice–

depends on Feynman-path dynamics. At each (cubic) path vertex the sum of the (1

or 2) ingoing ω values equals the sum of the (2 or 1) outgoing values, so total path

invariant energy decreases in inverse proportion to the age increase between path start

and finish. But Feynman’s formula for the ray at the upper slice boundary in terms of

the ray at the lower boundary does not imply a transfer of finishing path total energy to

the upper-boundary ray. Measurable redshift is not that of Milne.

Because the above-noted positive-energy-momentum-operator partial-expectation over

a ray, as well as other path-action-influencing self-adjoint-operator expectations, depend

nonlinearly on this ray, DQC ray propagation over more than one slice fails to be linear.

Linearity lacks general macroscopic DQC significance. At each exceptional age there is

exactly one universe ray and within each spacetime slice exactly one mundane reality.

The special character of photon and graviton wave functions is nevertheless expected to

allow approximate physical meaning for linear super -macroscopic propagation of electro-

magnetic and gravitational radiation.
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1. Introduction

In recent years, much work has been done on Ricci flow theory and fundamental problems

in mathematics [1, 2, 3] (see [4, 5, 6] for reviews and references therein). In this context,

a number of possible applications in modern gravity and mathematical physics were

proposed, for instance, for low dimensional systems and gravity [7, 8, 9, 10] and black

holes and cosmology [11, 12]. Such special cases were investigated following certain low

dimensional or approximative solutions of the evolution equations.

There were also examined possible connections between Ricci flows, solitonic con-

figurations and Einstein spaces [13, 14, 15]. In our works, we tackled the problem of

constructing exact solutions in Ricci flow and gravity theories in a new way. Working

with general (pseudo) Riemannian spaces and moving frames, we applied certain meth-

ods from the geometry of Finsler–Lagrange spaces and nonholonomic manifolds provided

with nonlinear connection structure (N–connection) [16, 17, 18, 19].

Prescribing on a manifold some preferred systems of reference and symmetries, it

is equivalent to define some nonintegrable (nonholonomic, equivalently, anholonomic)

distributions with associated N–connections. From this point of view, of the geometry

of so–called nonholonomic manifolds, it is possible to elaborate a unified formalism for

locally fibred manifolds and vector/tangent bundles when the geometric constructions

are adapted to the N–connection structure. We can consider different classes of metric

and N–connection ansatz and model, for instance, a Finsler, or Lagrange, geometry in a

(semi) Riemannian (in particular, Einstein) space. Inversely, we can define some effective

Lagrangian, or Finsler like, fundamental functions for lifts of geometric objects for a

theory of gravity to tangent bundles in order to elaborate a geometric mechanics model

for such gravitational and/or gauge field interactions, see examples and details in Refs.

[19, 20, 21, 22, 23]. It was also proved that constraining some classes of Ricci flows

of (semi) Riemannian metrics we can model Finsler like geometries and, inversely, we

can transform Finsler–Lagrange metrics and connections into Riemannian, or Riemann–

Cartan ones [13, 14, 24].

The most important idea in constructing exact solutions by geometric methods is that

we can consider such nonholonomic deformations of the frame and connection structures

when the Cartan structure equations, Ricci flow and/or Einstein equations transform

into systems of partial differential equations which can be integrated in general form,

or one can be derived certain bi–Hamilton and solitonic equations with corresponding

hierarchies and conservation laws, see [19, 15] and references therein.

The first examples of physically valuable exact solutions of nonholonomic Ricci flow

evolution equations and gravitational field equations were constructed following the so–

called anholonomic frame method [25, 26, 27]. We analyzed two general classes of so-

lutions of evolution equations on time like and/or extra dimension coordinate (having

certain nontrivial limits to exact solutions in gravity theories): The first class was elab-

orated for solitonic and pp–wave nonholonomic configurations. The second class was

connected to a study of nonholonomic Ricci flow evolutions of three and four dimensional
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(in brief, 3D and 4D) Taub–NUT metrics. Following those constructions and further

geometric developments in Refs. [13, 14], we concluded that a number of important for

physical considerations solutions of Ricci flow equations can be defined by nonholonomi-

cally generalized Einstein spaces with effective cosmological constant running on evolution

parameter, or (for more general and/or normalized evolution flows) by ’nonhomogeneous’

(locally anisotropic) cosmological constants.

This is the forth paper in a series of works on nonholonomic Ricci flows modelled by

nonintegrable constraints on the frame structure and evolution of metrics [13, 14, 15]. It

is devoted to geometric methods of constructing generic off–diagonal exact solutions in

gravity and Ricci flow theory.2 The goal is to elaborate a general scheme when starting

with certain classes of metrics, frames and connections new types of exact solutions are

constructed following some methods from nonholonomic spaces geometry [20, 21, 22,

23, 18] and certain group ideas [31, 32]. The approach to generating vacuum Einstein

metrics by parametric nonholonomic transforms was recently formulated in Ref. [33]

(this article proposes a ”Ricci flow development” of sections 2 and 3 in that paper). Such

results seem to have applications in modern gravity and nonlinear physics: In the fifth

partner paper [28], we show how nonholonomic Ricci flow evolution scenaria of physically

valuable metrics can be modelled by parametric deformations of solitonic pp–waves and

Schwarzschild solutions.

One should be noted that even there were found a large number of exact solutions

in different models of gravity theory [29, 30, 19, 20, 21, 22, 23], and in certain cases in

the Ricci flow theory [7, 8, 9, 10, 25, 26, 27, 15], one has been elaborated only a few

general methods for generating new physical solutions from a given metric describing a

real physical situation. For quantum fields, there were formulated some approximated

approaches when (for instance, by using Feynman diagrams, the formalism of Green’s

functions, or quantum integrals) the solutions are constructed to represent a linear or

nonlinear prescribed physical situation. Perhaps it is unlikely that similar computation

techniques can be elaborated in general form in gravity theories and related evolution

equations. Nevertheless, certain new possibilities seem to be opened after formulation of

the anholonomic frame method with parametric deformations for the Ricci flow theory.

Although many of the solutions resulting from such methods have no obvious physical

interpretation, one can be formulated some criteria selecting explicit classes of solutions

with prescribed symmetries and physical properties.

The paper has the following structure: In section 2, we outline some results on non-

holonomic manifolds and Ricci flows. Section 3 is devoted to the anholonomic frame

method for constructing exact solutions of Einstein and Ricci flow equations. There are

analyzed the conditions when such solutions define four and five dimensional foliations

related to Einstein spaces and Ricci flows for the canonical distinguished connection and

the Levi Civita connection. In section 4, we consider how various classes of metrics can be

subjected to nonholonomic deformations and multi–parametric transforms (with Killing

2 We shall follow the conventions from the first two partner works in the series; the reader is recommended
to study them in advance.
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symmetries) resulting in new classes of solutions of the Einstein/ Ricci flow equations.

We consider different ansatz for metrics and two examples with multi–parametric families

of Einstein spaces and related Ricci flow evolution models. The results are discussed in

section 5. The reader is suggested to see Appendices before starting the main part of the

paper: Appendix A outlines the geometry of nonlinear connections and the anholonomic

frame method of constructing exact solutions. Appendix B summarizes some results on

the parametric (Geroch) transforms of vacuum Einstein equations.

Notation remarks: It is convenient to use in parallel two types of denotations for

the geometric objects subjected to Ricci flows by introducing ”left–up” labels like χγ =

γ(..., χ). Different left–up labels will be also considered for some classes of metrics defining

Einstein spaces, vacuum solutions and so on. We shall also write ”boldface” symbols for

geometric objects and spaces adapted to a noholonomic (N–connection) structure, for

instance, V,E, ... A nonholonomic distribution with associated N–connection structure

splits the manifolds into conventional horizontal (h) and vertical (v) subspaces. The

geometric objects, for instance, a vector X can be written in abstract form X = (hX, vX),

or in coefficient forms, Xα = (X i, Xa) = (X i, Xa), equivalently decomposed with respect

to a general nonholonomic frame eα = (ei, ea) or coordinate frame ∂α = (∂i, ∂a) for local

h- and v–coordinates u = (x, y), or uα = (xi, ya) when ∂α = ∂/∂uα and ∂i = ∂/∂xi,

∂a = ∂/∂xa. The h–indices i, j, k, ... = 1, 2, ...n will be used for nonholonomic vector

components and the v–indices a, b, c... = n + 1, n + 2, ...n + m will be used for holonomic

vector components. Greek indices of type α, β, ... will be used as cumulative ones. We

shall omit labels, indices and parametric/ coordinate dependencies if it does not result

in ambiguities.

2. Preliminaries

In this section we present some results on nonholonomic manifolds and Ricci flows [13, 14]

selected with the aim to outline a new geometric method of constructing exact solu-

tions. The anholonomic frame method and the geometry of nonlinear connections (N–

connections) are considered, in brief, in Appendix A. The ideas on generating new

solutions from one/ two Killing vacuum Einstein spacetimes [31, 32] are summarized in

Appendix B.

2.1 Nonholonomic (pseudo) Riemannian Spaces

We consider a spacetime as a (necessary smooth class) manifold V of dimension n + m,

when n ≥ 2 and m ≥ 1 (a splitting of dimensions being defined by a N–connection

structure, see (A.3)). Such manifolds (equivalently, spaces) are provided with a metric,

g = gαβeα⊗eα, of any (pseudo) Euclidean signature and a linear connection D = {Γα
βγe

β}
satisfying the metric compatibility condition Dg = 0.3 The components of geometrical

3 in this work, the Einstein’s summation rule on repeating ”upper–lower” indices will be applied if the
contrary will not be stated



Electronic Journal of Theoretical Physics 6, No. 20 (2009) 27–58 31

objects, for instance, gαβ and Γα
βγ , are defined with respect to a local base (frame) eα

and its dual base (co–base, or co–frame) eα for which eα� eβ = δβ
α, where ”�” denotes

the interior product induced by g and δβ
α is the Kronecker symbol. For a local system of

coordinates uα = (xi, ya) on V (in brief, u = (x, y)), we write respectively

eα = (ei = ∂i =
∂

∂xi
, ea = ∂a =

∂

∂ya
) and eβ = (ej = dxj , eb = dyb),

for eα�eτ = δτ
α; the indices run correspondingly values of type: i, j, ... = 1, 2, ..., n and

a, b, ... = n + 1, n + 2, ...., n + m for any conventional splitting α = (i, a), β = (j, b), ...

Any local (vector) basis eα and dual basis eβ can be decomposed with respect to other

local bases eα′ and eβ′
by considering frame transforms,

eα = A α′
α (u)eα′ and eβ = Aβ

β′(u)eβ′
, (1)

where the matrix Aβ
β′ is the inverse to A α′

α . It should be noted that an arbitrary basis

eα is nonholonomic (equivalently, anholonomic) because, in general, it satisfies certain

anholonomy conditions

eαeβ − eβeα = W γ
αβ eγ (2)

with nontrivial anholonomy coefficients W γ
αβ(u). For W γ

αβ = 0, we get holonomic frames:

for instance, if we fix a local coordinate basis, eα = ∂α.

Denoting the covariant derivative along a vector field X = Xαeα as DX = X�D, we

can define the torsion

T (X, Y ) � DXY −DY X − [X, Y ], (3)

and the curvature

R(X, Y )Z � DXDY Z −DY DXZ −D[X,Y ]Z, (4)

tensors of connection D, where we use ”by definition” symbol ”�” and [X, Y ] � XY −
Y X. The components T = {T α

βγ} and R = {Rα
βγτ} are computed by introducing X →

eα, Y → eβ, Z → eγ into respective formulas (3) and (4).

The Ricci tensor is constructed Ric(D) = {Rβγ � Rα
βγα}. The scalar curvature R is

by definition the contraction with gαβ (being the inverse to the matrix gαβ), R � gαβRαβ ,

and the Einstein tensor is E = {Eαβ � Rαβ− 1
2
gαβR}. The vacuum (source–free) Einstein

equations are

E = {Eαβ = Rαβ} = 0. (5)

In general relativity theory, one chooses a connection D = ∇ which is uniquely defined

by the coefficients of a metric, gαβ, following the conditions of metric compatibility,

∇g = 0, and of zero torsion, �T = 0. This is the so–called Levi Civita connection �D = ∇.

We shall respectively label its curvature tensor, Ricci tensor, scalar curvature and Einstein

tensor in the form �R = { �R
α
βγτ}, �Ric(∇) = { �Rαβ � �R

α
βγα}, �R � gαβ

�Rαβ and

�E = { �Eαβ}.
Modern gravity theories consider extra dimensions and connections with nontrivial

torsion. For instance, in string gravity [35, 36], the torsion coefficients are induced by the
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so–called anti–symmetric H–fields and contain additional information about additional

interactions in low–energy string limit. A more special class of gravity interactions are

those with effective torsion when such fields are induced as a nonholonomic frame effect in

a unique form (3) by prescribing a nonholonomic distribution (A.3), defining a nonlinear

connection structure, N–connection, on a (pseudo) Riemannian manifold V enabled with

a metric structure (A.9). Such spaces with local fibred structure are called nonholonomic

(in more special cases, when the nonholonomy is defined by a N–connection structures,

the manifolds are called N–anholonomic) [17, 19]. The N–anholonomic spaces can be

described in equivalent form by two linear connections ∇ (A.16) and D̂ (A.17), both

metric compatible and completely stated by a metric (A.10), equivalently (A.8). 4 As a

matter of principle, the general relativity theory can be formulated in terms of both con-

nections, ∇ and D̂; the last variant being with nonholonomic constraints on geometrical

objects. One must be emphasized that the standard approach follows the formulation of

gravitational field equations just for the Einstein tensor �E for ∇ which, in general, is

different from the Einstein tensor Ê for D̂.

A surprising thing found in our works is that for certain classes of generic off–diagonal

metric ansatz (A.9) it is possible to construct exact solutions in general form by using the

connection D̂ but not the connection ∇. Here we note that having defined certain integral

varieties for a first class of linear connections we can impose some additional constraints

and generate solutions for a class of Levi Civita connections, for instance, in the Einstein

and string, or Finsler like, generalizations of gravity. Following a geometric N–adapted

formalism (the so–called anholonomic frame method), such solutions were constructed

and studied in effective noncommutative gravity [18], various locally anisotropic (Finsler

like and more general ones) extensions of the Einstein and Kaluza–Klein theory, in string

an brane gravity [20, 21, 23] and for Lagrange–Fedosov manifolds [34], see a summary in

[19].

The anholonomic frame method also allows us to construct exact solutions in general

relativity: One defines a more general class of solutions for D̂ and then imposes certain

subclasses of nonholonomic constraints when such solutions solve the four dimensional

Einstein equations for ∇. Here we note that by nonholonomic deformations we were able

to study nonholonomic Ricci flows of certain classes of physically valuable exact solutions

like solitonic pp–waves [25] and Taub NUT spaces [26, 27]. In this work, we develop the

approach by applying new group methods.

Certain nontrivial limits to the vacuum Einstein gravity can be selected if we impose

on the nonholonomic structure such constraints when

E = �E (6)

even, in general, D �= ∇. We shall consider such conditions when D and ∇ have the same

components with respect to certain preferred bases and the equality (6) can be satisfied

4 In this work, we shall use only ∇ and the canonical d–connection D̂ and, for simplicity, we shall omit
”hat” writing D if that will not result in ambiguities.
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for some very general classes of metric ansatz.5

We shall use left–up labels ”◦” or ”λ” for a metric,

◦g = ◦gαβ eα ⊗ eβ or λg = λgαβ eα ⊗ eβ

being (correspondingly) a solution of the vacuum Einstein (or with cosmological constant)

equations E = 0 (5) or of the Einstein equations with a cosmological constant λ, Rαβ =

λgαβ, for a linear connection D with possible torsion T �= 0. In order to emphasize that

a metric is a solution of the vacuum Einstein equations, in any dimension n + m ≥ 3, for

the Levi Civita connection ∇, we shall write

◦
� g = ◦

� gαβ eα ⊗ eβ or λ
� g = λ

� gαβ eα ⊗ eβ,

where the left–low label ”�” will distinguish the geometric objects for the Ricci flat space

defined by a Levi Civita connection ∇.

Finally, in this section, we note that we shall use ”boldface” symbols, for instance, if
λg = λgαβ eα ⊗ eβ defines a nonholonomic Einstein space as a solution of

Rαβ = λgαβ (7)

for the canonical d–connection D.

2.2 Evolution Equations for Nonholonomic Ricci Flows

The normalized (holonomic) Ricci flows [3, 4, 5, 6] for a family of metrics gαβ(χ) =

gαβ(uν , χ), parametrized by a real parameter χ, with respect to the coordinate base

∂α = ∂/∂uα, are described by the equations

∂

∂χ
gαβ = −2 �Rαβ +

2r

5
gαβ, (8)

where the normalizing factor r =
∫

�RdV/dV is introduced in order to preserve the

volume V. 6

5 We emphasize that different linear connections may be subjected to different rules of frame and coor-
dinate transforms. It should be noted here that tensors and nonlinear and linear connections transform
in different ways under frame and coordinate changing on manifolds with locally fibred structures, see
detailed discussions in [16, 19].
6 The Ricci flow evolution equations were introduced by R. Hamilton [1], as evolution equations

∂g
αβ
(χ)

∂χ
= −2 �Rαβ(χ),

for a set of Riemannian metrics g
αβ
(χ) and corresponding Ricci tensors �Rαβ(χ) parametrized by a real

χ (we shall underline symbols or indices in order to emphasize that certain geometric objects/ equations
are given with the components defined with respect to a coordinate basis). For our further purposes, on
generalized Riemann–Finsler spaces, it is convenient to use a different system of denotations than those
considered by R. Hamilton or Grisha Perelman on holonomic Riemannian spaces.
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For N–anholonomic Ricci flows, the coefficients gαβ are parametrized in the form (A.9),

see proofs and discussion in Refs. [13, 25, 26, 27]. With respect to N–adapted frames

(A.4) and (A.5), the Ricci flow equations (8), redefined for ∇ → D̂ and, respectively,

�Rαβ → R̂αβ are

∂

∂χ
gij = 2

[
Na

i N b
j

(
R̂ab − λgab

)
− R̂ij + λgij

]
− gcd

∂

∂χ
(N c

i N
d
j ), (9)

∂

∂χ
gab = −2

(
R̂ab − λgab

)
, (10)

R̂ia = 0 and R̂ai = 0, (11)

where λ = r/5 the Ricci coefficients R̂ij and R̂ab are computed with respect to coordi-

nate coframes. The equations (11) constrain the nonholonomic Ricci flows to result in

symmetric metrics.7

Nonholonomic deformations of geometric objects (and related systems of equations)

on a N–anholonomic manifold V are defined for the same metric structure g by a set of

transforms of arbitrary frames into N–adapted ones and of the Levi Civita connection ∇
into the canonical d–connection D̂, locally parametrized in the form

∂α = (∂i, ∂a)→ eα = (ei, ea); gαβ → [gij, gab, N
a
i ]; �Γ

γ
αβ → Γ̂γ

αβ .

A rigorous proof for nonholonomic evolution equations is possible following a N–adapted

variational calculus for the Perelman’s functionals presented in Refs. [14]. For a five

dimensional space with diagonal d–metric ansatz (A.10), when gij = diag[±1, g2, g3] and

gab = diag[g4, g5], we considered [25] the nonholonomic evolution equations

∂

∂χ
gii = −2

[
R̂ii − λgii

]
− gcc

∂

∂χ
(N c

i )
2, (12)

∂

∂χ
gaa = −2

(
R̂aa − λgaa

)
, (13)

R̂αβ = 0 for α �= β, (14)

with the coefficients defined with respect to N–adapted frames (A.4) and (A.5). This sys-

tem can be transformed into a similar one, like (9)–(11), by nonholonomic deformations.

3. Off–Diagonal Exact Solutions

We consider a five dimensional (5D) manifold V of necessary smooth class and conven-

tional splitting of dimensions dimV = n+m for n = 3 and m = 2. The local coordinates

are labelled in the form uα = (xi, ya) = (x1, x̂i, y4 = v, y5), for i = 1, 2, 3 and î = 2, 3

and a, b, ... = 4, 5. Any coordinates from a set uα can be a three dimensional (3D) space,

time, or extra dimension (5th) one. Ricci flows of geometric objects will be parametrized

by a real χ.

7 In Refs. [13, 24], we discuss this problem related to the fact that the tensor R̂αβ is not symmetric
which results, in general, in Ricci flows of nonsymmetric metrics.
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3.1 Off–diagonal Ansatz for Einstein Spaces and Ricci Flows

The ansatz of type (A.10) is parametrized in the form

g = g1dx1 ⊗ dx1 + g2(x
2, x3)dx2 ⊗ dx2 + g3

(
x2, x3

)
dx3 ⊗ dx3

+h4

(
xk, v

)
δv ⊗ δv + h5

(
xk, v

)
δy ⊗ δy,

δv = dv + wi

(
xk, v

)
dxi, δy = dy + ni

(
xk, v

)
dxi (15)

with the coefficients defined by some necessary smooth class functions

g1 = ±1, g2,3 = g2,3(x
2, x3), h4,5 = h4,5(x

i, v),

wi = wi(x
i, v), ni = ni(x

i, v).

The off–diagonal terms of this metric, written with respect to the coordinate dual frame

duα = (dxi, dya), can be redefined to state a N–connection structure N = [N4
i =

wi(x
k, v),N5

i = ni(x
k, v)] with a N–elongated co–frame (A.5) parametrized as

e1 = dx1, e2 = dx2, e3 = dx3,

e4 = δv = dv + widxi, e5 = δy = dy + nidxi. (16)

This coframe is dual to the local basis

ei =
∂

∂xi
− wi

(
xk, v

) ∂

∂v
− ni

(
xk, v

) ∂

∂y5
, e4 =

∂

∂v
, e5 =

∂

∂y5
. (17)

We emphasize that the metric (15) does not depend on variable y5, i.e. it posses a Killing

vector e5 = ∂/∂y5, and distinguishes the dependence on the so–called ”anisotropic” vari-

able y4 = v.

The above considered ansatz and formulas can be generalized in order to model Ricci

flows,

χg = g1dx1 ⊗ dx1 + g2(x
2, x3, χ)dx2 ⊗ dx2 + g3

(
x2, x3, χ

)
dx3 ⊗ dx3

+h4

(
xk, v, χ

)
χδv ⊗ χδv + h5

(
xk, v, χ

)
χδy ⊗ χδy,

χδv = dv + wi

(
xk, v, χ

)
dxi, χδy = dy + ni

(
xk, v, χ

)
dxi (18)

with corresponding flows for N–adapted bases,

eα = (ei, ea)→ χeα = ( χei, ea) = eα(χ) = (ei(χ), ea),

eα = (ei, ea)→ χeα = (ei, χea) = eα(χ) = (ei, ea(χ))

defined by wi

(
xk, v

)
→ wi

(
xk, v, λ

)
, ni

(
xk, v

)
→ ni

(
xk, v, λ

)
in (17), (16).

Computing the components of the Ricci and Einstein tensors for the metric (18) (see

main formulas in Appendix and details on tensors components’ calculus in Refs. [18, 19]),

one proves that the corresponding family of Ricc tensors for the canonical d–connection

with respect to N–adapted frames are compatible with the sources (they can be any

matter fields, string corrections, Ricci flow parameter derivatives of metric, ...)

Υα
β = [Υ1

1 = Υ2 + Υ4, Υ
2
2 = Υ2(x

2, x3, v, χ), Υ3
3 = Υ2(x

2, x3, v, χ),

Υ4
4 = Υ4(x

2, x3, χ), Υ5
5 = Υ4(x

2, x3, χ)] (19)
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transform into this system of partial differential equations:

R2
2 = R3

3(χ) (20)

=
1

2g2g3

[
g•2g

•
3

2g2

+
(g•3)

2

2g3

− g••3 +
g

′
2g

′
3

2g3

+
(g

′
2)

2

2g2

− g
′′
2 ] = −Υ4(x

2, x3, χ),

S4
4 = S5

5(χ) =
1

2h4h5

[
h∗5
(
ln
√
|h4h5|

)∗
− h∗∗5

]
= −Υ2(x

2, x3, v, χ), (21)

R4i = −wi(χ)
β(χ)

2h5(χ)
− αi(χ)

2h5(χ)
= 0, (22)

R5i = − h5(χ)

2h4(χ)
[n∗∗i (χ) + γ(χ)n∗i (χ)] = 0, (23)

where, for h∗4,5 �= 0,

αi(χ) = h∗5(χ)∂iφ(χ), β(χ) = h∗5(χ) φ∗(χ), (24)

γ(χ) =
3h∗5(χ)

2h5(χ)
− h∗4(χ)

h4(χ)
, φ(χ) = ln | h∗5(χ)√

|h4(χ)h5(χ)|
|, (25)

when the necessary partial derivatives are written in the form a• = ∂a/∂x2, a′ = ∂a/∂x3,

a∗ = ∂a/∂v. In the vacuum case, we must consider Υ2,4 = 0. We note that we use a source

of type (19) in order to show that the anholonomic frame method can be applied also for

non–vacuum configurations, for instance, when Υ2 = λ2 = const and Υ4 = λ4 = const,

defining local anisotropies generated by an anisotropic cosmological constant, which in its

turn, can be induced by certain ansatz for the so–called H–field (absolutely antisymmetric

third rank tensor) in string theory [18, 19]. We note that the off–diagonal gravitational

interactions and Ricci flows can model locally anisotropic configurations even if λ2 = λ4,

or both values vanish.

Summarizing the results for an ansatz (15) with arbitrary signatures εα = (ε1, ε2, ε3, ε4, ε5)

(where εα = ±1) and h∗4 �= 0 and h∗5 �= 0, for a fixed value of χ, one proves, see details in

[18, 19], that any off—diagonal metric

◦g = ε1 dx1 ⊗ dx1 + ε2g2(x̂
i) dx2 ⊗ dx2 + ε3g3(x̂

i) dx3 ⊗ dx3

+ε4h
2
0(x

i)
[
f ∗
(
xi, v

)]2 |ς (xi, v
)
| δv ⊗ δv

+ε5

[
f
(
xi, v

)
− f0(x

i)
]2

δy5 ⊗ δy5,

δv = dv + wk

(
xi, v

)
dxk, δy5 = dy5 + nk

(
xi, v

)
dxk, (26)

with the coefficients being of necessary smooth class and the idices with ”hat” running

the values î, ĵ, ... = 2, 3, where gk̂

(
x̂i
)

is a solution of the 2D equation (20) for a given

source Υ4

(
x̂i
)

,

ς
(
xi, v

)
= ς[0]

(
xi
)
− ε4

8
h2

0(x
i)

∫
Υ2(x

k̂, v)f ∗
(
xi, v

) [
f
(
xi, v

)
− f0(x

i)
]
dv,

and the N–connection coefficients N4
i = wi(x

k, v), N5
i = ni(x

k, v) are computed following
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the formulas

wi = −
∂iς

(
xk, v

)
ς∗ (xk, v)

(27)

nk = nk[1]

(
xi
)

+ nk[2]

(
xi
) ∫ [f ∗ (xi, v)]

2

[f (xi, v)− f0(xi)]3
ς
(
xi, v

)
dv, (28)

define an exact solution of the system of Einstein equations (7). It should be emphasized

that such solutions depend on arbitrary functions f (xi, v) , with f ∗ �= 0, f0(x
i), h2

0(x
i),

ς[0] (x
i) , nk[1] (x

i) , nk[2] (x
i) and Υ2(x

k̂, v), Υ4

(
x̂i
)

. Such values for the corresponding

signatures εα = ±1 have to be stated by certain boundary conditions following some

physical considerations.8

The ansatz of type (15) with h∗4 = 0 but h∗5 �= 0 (or, inversely, h∗4 �= 0 but h∗5 = 0)

consist more special cases and request a bit different methods for constructing exact

solutions. Nevertheless, such solutions are also generic off–diagonal and they may be of

substantial interest (the length of paper does not allow us to include an analysis of such

particular cases).

3.2 Generalization of Solutions for Ricci Flows

For families of solutions parametrized by χ, we consider flows of the generating functions,

g2(x
i, χ), or g3(x

i, χ), and f (xi, v, χ) , and various types of integration functions and

sources, for instance, nk[1] (x
i, χ) and nk[2] (x

i, χ) and Υ2(x
k̂, v, χ), respectively, in formulas

(27) and (28). Let us analyze an example of exact solutions of equations (12)–(14):

We search a class of solutions of with

g2 = ε2�(x2, x3, χ), g3 = ε3�(x2, x3, χ),

h4 = h4

(
x2, x3, v

)
, h5 = h5

(
x2, x3, v

)
,

for a family of ansatz (18) with any prescribed signatures εα = ±1 and non–negative

functions � and h. Following a tensor calculus, adapted to the N–connection, for the

canonical d–connection,9 we express the integral variety for a class of nonholonomic Ricci

flows as

ε2(ln |�|)•• + ε3(ln |�|)
′′

= 2λ− h5∂χ (n2)
2 , (29)

h4 = hς4

8 Our classes of solutions depending on integration functions are more general than those for diagonal
ansatz depending, for instance, on one radial like variable like in the case of the Schwarzschild solution
(when the Einstein equations are reduced to an effective nonlinear ordinary differential equation, ODE).
In the case of ODE, the integral varieties depend on integration constants to be defined from certain
boundary/ asymptotic and symmetry conditions, for instance, from the constraint that far away from the
horizon the Schwarzschild metric contains corrections from the Newton potential. Because our ansatz
(15) transforms (7) in a system of nonlinear partial differential equations transforms, the solutions depend
not on integration constants but on integration functions.
9 similar computations are given in [18] and Chapter 10 of [19]
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for

ς4(x
2, x3, v) = ς4[0](x

2, x3)− λ

4

∫
hh5

h∗5
dv√

|h| = h[0](x
i)
(√
|h5 (x2, x3, v) |

)∗
(30)

and, for ϕ = − ln
∣∣∣√|h4h5|/|h∗5|

∣∣∣ ,
w1 = 0, w2 = (ϕ∗)−1ϕ•, w3 = (ϕ∗)−1ϕ′, (31)

n1 = 0, n2 = n3 = n[1](x
2, x3, χ) + n[2](x

2, x3, χ)

∫
dv h4/

(√
|h5|

)3

,

where the partial derivatives are denoted in the form ϕ• = ∂ϕ/∂x2, ϕ
′
= ∂ϕ/∂x3, ϕ∗ =

∂ϕ/∂v, ∂χ = ∂/∂x2, and arbitrary h5 when h∗5 �= 0. For λ = 0, we shall consider ς4[0] = 1

and h[0](x
i) = const in order to solve the vacuum Einstein equations. There is a class of

solutions when

h5

∫
dv h4/

(√
|h5|

)3

= C(x2, x3),

for a function C(x2, x3). This is compatible with the condition (30), and we can chose

such configurations, for instance, with n[1] = 0 and any n[2](x
2, x3, χ) and �(x2, x3, χ)

solving the equation (29).

Putting together (29)–(31), we get a class of solutions of the system (12)–(14) (the

equations being expressed equivalently in the form (20)–(23)) for nonholonomomic Ricci

flows of metrics of type (18),

χg = ε1dx1 ⊗ dx1 + �(x2, x3, χ)
[
ε2dx2 ⊗ dx2 + ε3dx3 ⊗ dx3

]
+h4

(
x2, x3, v

)
δv ⊗ δv + h5

(
x2, x3, v

)
χδy ⊗ χδy,

δv = dv + w2

(
x2, x3, v

)
dx2 + w3

(
x2, x3, v

)
dx3, (32)

χδy = dy + n2

(
x2, x3, v, χ

)
[dx2 + dx3].

Such solutions describe in general form the Ricci flows of nonholonomic Einstein spaces

constrained to relate in a mutually compatible form the evolution of horizontal part of

metric, �(x2, x3, χ), with the evolution of N–connection coefficients n2 = n3 = n2 (x2, x3, v, χ) .

We have to impose certain boundary/ initial conditions for χ = 0, beginning with an ex-

plicit solution of the Einstein equations, in order to define the integration functions and

state an evolution scenario for such classes of metrics and connections.

3.3 4D and 5D Einstein Foliations and Ricci Flows

The method of constructing 5D solutions can be restricted to generate 4D nonholonomic

configurations and generic off–diagonal solutions in general relativity. In order to consider

reductions 5D → 4D for the ansatz (15), we can eliminate from the formulas the variable

x1 and consider a 4D space V4 (parametrized by local coordinates (x2, x3, v, y5)) trivially

embedded into a 5D spacetime V (parametrized by local coordinates (x1, x2, x3, v, y5)
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with g11 = ±1, g1α̂ = 0, α̂ = 2, 3, 4, 5). In this case, there are possible 4D confor-

mal and anholonomic transforms depending only on variables (x2, x3, v) of a 4D metric

gα̂β̂ (x2, x3, v) of arbitrary signature. To emphasize that some coordinates are stated just

for a 4D space we might use ”hats” on the Greek indices, α̂, β̂, ... and on the Latin indices

from the middle of the alphabet, î, ĵ, ... = 2, 3; local coordinates on V4 are parametrized

uα̂ =
(
x̂i, ya

)
= (x2, x3, y4 = v, y5) , for a, b, ... = 4, 5. The ansatz

g = g2 dx2 ⊗ dx2 + g3 dx3 ⊗ dx3 + h4 δv ⊗ δv + h5 δy5 ⊗ δy5, (33)

is written with respect to the anholonomic co–frame
(
dx̂i, δv, δy5

)
, where

δv = dv + wîdx̂i and δy5 = dy5 + nîdx̂i (34)

is the dual of (δ̂i, ∂4, ∂5) , for

δ̂i = ∂̂i + wî∂4 + nî∂5, (35)

and the coefficients are necessary smoothly class functions of type:

gĵ = gĵ(x
k̂), h4,5 = h4,5(x

k̂, v),

wî = wî(x
k̂, v), nî = nî(x

k̂, v); î, k̂ = 2, 3.

In the 4D case, a source of type (19) should be considered without the component Υ1
1

in the form

Υα̂
β̂

= diag[Υ2
2 = Υ3

3 = Υ2(x
k̂, v), Υ4

4 = Υ5
5 = Υ4(x

k̂)]. (36)

The Einstein equations with sources of type (36) for the canonical d–connection (A.16)

defined by the ansatz (33) transform into a system of nonlinear partial differential equa-

tions very similar to (20)–(23). The difference for the 4D equations is that the coordinate

x1 is not contained into the equations and that the indices of type i, j, .. = 1, 2, 3 must be

changed into the corresponding indices î, ĵ, .. = 2, 3. The generated classes of 4D solutions

are defined almost by the same formulas (26), (27) and (28).

Now we describe how the coefficients of an ansatz (33) defining an exact vacuum

solution for a canonical d–connection can be constrained to generate a vacuum solution

in Einstein gravity: We start with the conditions (A.20) written (for our ansatz) in the

form

∂h4

∂xk̂
− wk̂h

∗
4 − 2w∗

k̂
h4 = 0, (37)

∂h5

∂xk̂
− wk̂h

∗
5 = 0, (38)

n∗
k̂
h5 = 0. (39)

These equations for nontrivial values of wk̂ and nk̂ constructed for some defined values

of h4 and h5 must be compatible with the equations (21)–(23) for Υ2 = 0. One can be

taken nonzero values for wk̂ in (22) if and only if αî = 0 because the the equation (21)
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imposes the condition β = 0. This is possible, for the sourceless case and h∗5 �= 0, if and

only if

φ = ln
∣∣∣h∗5/√|h4h5|

∣∣∣ = const, (40)

see formula (25). A very general class of solutions of equations (37), (38) and (40) can

be represented in the form

h4 = ε4h
2
0 (b∗)2 , h5 = ε5(b + b0)

2, (41)

wk̂ = (b∗)−1 ∂(b + b0)

∂xk̂
,

where h0 = const and b = b(xk̂, v) is any function for which b∗ �= 0 and b0 = b0(x
k̂) is an

arbitrary integration function.

The next step is to satisfy the integrability conditions (A.18) defining a foliated space-

times provided with metric and N–connection and d–connection structures [18, 19, 34]

(we note that (pseudo) Riemannian foliations are considered in a different manner in Ref.

[17]) for the so–called Schouten – Van Kampen and Vranceanu connections not subjected

to the condition to generate Einstein spaces). It is very easy to show that there are

nontrivial solutions of the constraints (A.18) which for the ansatz (33) are written in the

form

w′2 − w•3 + w3w
∗
2 − w2w

∗
3 = 0, (42)

n′2 − n•3 + w3n
∗
2 − w2n

∗
3 = 0.

We solve these equations for n∗2 = n∗3 = 0 if we take any two functions n2,3(x
k̂) satisfying

n′2 − n•3 = 0 (43)

(this is possible by a particular class of integration functions in (28) when nk̂[2]

(
x̂i
)

= 0

and nk̂[1]

(
x̂i
)

are constraint to satisfy just the conditions (43)). Then we can consider

any function b(xk̂, v) for which wk̂ = (b∗)−1 ∂k̂(b + b0) solve the equation (42). In a more

particular case, one can be constructed solutions for any b(x3, v), b∗ �= 0, and n2 = 0 and

n3 = n3(x
3, v) (or, inversely, for any n2 = n2(x

2, v) and n3 = 0). We also note that the

conditions (A.19) are solved in a straightforward form by the ansatz (33).

We conclude that for any sets of coefficients

h4(x
k̂, v), h5(x

k̂, v), wk̂(x
k̂, v), n2,3(x

k̂)

respectively generated by functions b(xk̂, v) and nk̂[1]

(
x̂i
)

, see (41), and satisfying (43),

the generic off–diagonal metric (33) possess the same coefficients both for the Levi Civita

and canonical d–connection being satisfied the conditions (6) of equality of the Einstein

tensors. Here we note that any 2D metric can be written in a conformally flat form, i. e.

we can chose such local coordinates when

g2(dx2)2 + g3(dx3)2 = eψ(xî)
[
ε2̂(dx2̂)2 + ε3̂(dx3̂)2

]
,
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for signatures εk̂ = ±1, in (33).

Summarizing the results of this section, we can write down the generic off–diagonal

metric (it is a 4D dimensional reduction of (26))

◦
�
g = eψ(x2,x3)

[
ε2 dx2 ⊗ dx2 + ε3 dx3 ⊗ dx3

]
(44)

+ε4h
2
0

[
b∗
(
xi, v

)]2
δv ⊗ δv

+ε5

[
b
(
x2, x3, v

)
− b0(x

2, x3)
]2

δy5 ⊗ δy5,

δv = dv + w2

(
x2, x3, v

)
dx2 + w3

(
x2, x3, v

)
dx3,

δy5 = dy5 + n2

(
x2, x3

)
dx2 + n3

(
x2, x3

)
dx3,

defining vacuum exact solutions in general relativity if the coefficients are restricted to

solve the equations

ε2ψ
•• + ε3ψ

′′
= 0, (45)

w′2 − w•3 + w3w
∗
2 − w2w

∗
3 = 0,

n′2 − n•3 = 0,

for w2 = (b∗)−1 (b + b0)
• and w3 = (b∗)−1 (b + b0)

′, where, for instance, n•3 = ∂2n3 and

n′2 = ∂3n2.

We can generalize (44) similarly to (26) in order to generate solutions for nontrivial

sources (36). In general, they will contain nontrivial anholonomically induced torsions.

Such configurations may be restricted to the case of Levi Civita connection by solving the

constraints (37)–(39) in order to be compatible with the equations (21) and (22) for the

coefficients αî and β computed for h∗5 �= 0 and ln
∣∣∣h∗5/√|h4h5|

∣∣∣ = φ(x2, x3, v) �= const, see

formula (25), resulting in more general conditions than (40) and (41). Roughly speaking,

all such coefficients are generated by any h4 (or h5) defined from (22) for prescribed values

h5 (or h5) and Υ2(x
k̂, v). The existence of a nontrivial matter source of type (36) does not

change the condition n∗
k̂

= 0, see (39), necessary for extracting torsionless configurations.

This mean that we have to consider only trivial solutions of (23) when two functions

nk̂ = nk̂(x
2, x3) are subjected to the condition (42). We conclude that this class of exact

solutions of the Einstein equations with nontrivial sources (36), in general relativity, is

defined by the ansatz

◦
�
g = eψ(x2,x3)

[
ε2 dx2 ⊗ dx2 + ε3 dx3 ⊗ dx3

]
+ (46)

h4

(
x2, x3, v

)
δv ⊗ δv + h5

(
x2, x3, v

)
δy5 ⊗ δy5,

δv = dv + w2

(
x2, x3, v

)
dx2 + w3

(
x2, x3, v

)
dx3,

δy5 = dy5 + n2

(
x2, x3

)
dx2 + n3

(
x2, x3

)
dx3,

where the coefficients satisfy the conditions

ε2ψ
•• + ε3ψ

′′
= Υ2

h∗5φ/h4h5 = Υ2, (47)

w′2 − w•3 + w3w
∗
2 − w2w

∗
3 = 0,

n′2 − n•3 = 0,
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for wî = ∂̂iφ/φ∗, see (25), being compatible with (37) and (38), for given sources Υ4(x
k̂)

and Υ2(x
k̂, v). We emphasize that the second equation in (47) relates two functions h4

and h5. In references [20, 21, 22, 23, 18], we investigated a number of configurations with

nontrivial two and three dimensional solitons, reductions to the Riccati or Abbel equation,

defining off–diagonal deformations of the black hole, wormhole or Taub NUT spacetimes.

Those solutions where constructed to be with trivial or nontrivial torsions but if the

coefficients of the ansatz (46) are restricted to satisfy the conditions (47) in a compatible

form with (37) and (38), for sure, such metrics will solve the Einstein equations for the

Levi Civita connection. We emphasize that the ansatz (46) defines Einstein spaces with

a cosmological constant λ if we put Υ2 = Υ4 = λ in (47).

Let us formulate the conditions when families of metrics (46) subjected to the condi-

tions (47) will define exact solutions of the Ricci flows of usual Einstein spaces (for the

Levi Civita connection). We consider the ansatz

λ
� g(χ) = eψ(x2,x3,χ)

[
ε2 dx2 ⊗ dx2 + ε3 dx3 ⊗ dx3

]
+ (48)

h4

(
x2, x3, v, χ

)
δv ⊗ δv + h5

(
x2, x3, v, χ

)
χδy5 ⊗ χδy5,

δv = dv + w2

(
x2, x3, v

)
dx2 + w3

(
x2, x3, v

)
dx3,

χδy5 = dy5 + n2

(
x2, x3, χ

)
[dx2 + dx3],

which is a subfamily of (32), when � = eψ(x2,x3,χ) and n2 = n3 does not depend on

variable v and the coefficients satisfy the conditions (29) and (30), when n[2] = 0 but n[1]

can be nontrivial in (31), and (additionally)

ε2ψ
••(χ) + ε3ψ

′′
(χ) = λ,

h∗5φ/h4h5 = λ, (49)

w′2 − w•3 + w3w
∗
2 − w2w

∗
3 = 0,

n′2(χ)− n•2(χ) = 0,

for wî = ∂̂iφ/φ∗, see (25), being compatible with (37) and (38), for given sources Υ4 = λ

and Υ2 = λ. The family of metrics (48) define a self–consistent evolution as a class of

general solutions of the Ricci flow equations (12)–(14) transformed equivalently in the

form (20)–(23). The additional constraints (49) define an integral subvariety (foliation)

of (32) when the evolution is selected for the Levi Civita connection.

4. Nonholonomic and Parametric Transforms

Anholonomic deformations can be defined for any primary metric and frame structures

on a spacetime V (as a matter of principle, the primary metric can be not a solution

of the gravitational field equations). Such deformations always result in a target space-

time possessing one Killing vector symmetry if the last one is constrained to satisfy the

vacuum Einstein equations for the canonical d–connection, or for the Levi Civita con-

nection. For such target spacetimes, we can always apply a parametric transform and

generate a set of generic off–diagonal solutions labelled by a parameter θ (B.2). There are
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possible constructions when the anholonomic frame transforms are applied to a family of

metrics generated by the parametric method as new exact solutions of the vacuum Ein-

stein equations, but such primary metrics have to be parametrized by certain type ansatz

admitting anholonomic transforms to other classes of exact solutions. Additional con-

straints and parametrizations are necessary for generating exact solutions of holonomic

or nonholonomic Ricci flow equations.

4.1 Deformations and Frame Parametrizations

Let us consider a (n + m)–dimensional manifold (spacetime) V, n ≥ 2, m ≥ 1, enabled

with a metric structure ǧ = ǧ ⊕N ȟ distinguished in the form

ǧ = ǧi(u)(dxi)2 + ȟa(u)(ča)2, (50)

ča = dya + Ňa
i (u)dxi.

The local coordinates are parametrized u = (x, y) = {uα = (xi, ya)}, for the indices of

type i, j, k, ... = 1, 2, ..., n (in brief, horizontal, or h–indices/ components) and a, b, c, ... =

n + 1, n + 2, ...n + m (vertical, or v–indices/ components). We suppose that, in general,

the metric (50) is not a solution of the Einstein equations but can be nonholonomically

deformed in order to generate exact solutions. The coefficients Ňa
i (u) from (50) state a

conventional (n + m)–splitting ⊕Ň in any point u ∈ V and define a class of ’N–adapted’

local bases

ěα =

(
ěi =

∂

∂xi
− Ňa

i (u)
∂

∂ya
, ea =

∂

∂ya

)
(51)

and local dual bases (co–frames) č = (c, č), when

čα =
(
cj = dxi, čb = dyb + Ň b

i (u) dxi
)
, (52)

for č� ě = I, i.e. ěα� čβ = δβ
α, where the inner product is denoted by ’�’ and the Kronecker

symbol is written δβ
α. The frames (51) satisfy the nonholonomy (equivalently, anholonomy)

relations

ěαěβ − ěβěα = w̌γ
αβ ěγ

with nontrivial anholonomy coefficients

w̌a
ji = −w̌a

ij = Ω̌a
ij � ěj

(
Ňa

i

)
− ěi

(
Ňa

j

)
, (53)

w̌b
ia = −w̌b

ai = ea(Ň
b
j ).

A metric g = g ⊕N h parametrized in the form

g = gi(u)(ci)2 + ga(u)(ca), (54)

ca = dya + Na
i (u)dxi

is a nonhlonomic transform (deformation), preserving the (n+m)–splitting, of the metric,

ǧ = ǧ ⊕Ň ȟ if the coefficients of (50) and (54) are related by formulas

gi = ηi(u) ǧi, ha = ηa(u) ȟa and Na
i = ηa

i (u)Ňa
i , (55)
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where the summation rule is not considered for the indices of gravitational ’polarizations’

ηα = (ηi, ηa) and ηa
i in (55). For nontrivial values of ηa

i (u), the nonholonomic frames

(51) and (52) transform correspondingly into

eα =

(
ei =

∂

∂xi
−Na

i (u)
∂

∂ya
, ea =

∂

∂ya

)
(56)

and

cα =
(
cj = dxi, ca = dya + Na

i (u) dxi
)

(57)

with the anholonomy coefficients Wγ
αβ defined by Na

i (A.7).

We emphasize that in order to generate exact solutions, the gravitational ’polariza-

tions’ ηα = (ηi, ηa) and ηa
i in (55) are not arbitrary functions but restricted in a such

form that the values

±1 = η1(u
α) ǧ1(u

α), (58)

g2(x
2, x3) = η2(u

α) ǧ2(u
α), g3(x

2, x3) = η3(u
α) ǧ3(u

α),

h4(x
i, v) = η4(u

α) ȟ4(u
α), h5(x

i, v) = η5(u
α) ȟ5(u

α),

wi(x
i, v) = η4

i (u
α)Ň4

i (uα), ni(x
i, v) = η5

i (u
α)Ň5

i (uα),

define an ansatz of type (26), or (44) (for vacuum configurations) and (46) for nontrivial

matter sources Υ2(x
2, x3, v) and Υ4(x

2, x3).

Any nonholonomic deformation

ǧ = ǧ ⊕Ň ȟ −→ g = g ⊕N h (59)

can be described by two frame matrices of type (A.1),

Ǎ α
α (u) =

⎡⎢⎣ δ
i

i −Ň b
j δ

a
b

0 δ a
a

⎤⎥⎦ , (60)

generating the d–metric ǧαβ = Ǎ α
α Ǎ

β

β ǧαβ, see formula (A.11), and

A α
α (u) =

⎡⎢⎣√|ηi|δ i
i −ηa

i Ň
b
j δ

a
b

0
√
|ηa|δ a

a

⎤⎥⎦ , (61)

generating the d–metric gαβ = A α
α A

β

β ǧαβ (58).

If the metric and N–connection coefficients (55) are stated to be those from an ansatz

(26) (or (44)), we should write ◦g = g ⊕N h (or ◦
�
g = g ⊕N h) and say that the metric

ǧ = ǧ ⊕N ȟ (50) was nonholonomically deformed in order to generate an exact solution

of the Einstein equations for the canonical d–connection (or, in a restricted case, for

the Levi Civita connection). In general, such metrics have very different geometrical

and physical properties. Nevertheless, at least for some classes of ’small’ nonsingular

nonholonomic deformations, it is possible to preserve a similar physical interpretation

by introducing small polarizations of metric coefficients and deformations of existing

horizons, not changing the singular structure of curvature tensors. Explicit examples are

constructed in Ref. [28].
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4.2 The Geroch Transforms as Parametric Nonholonomic Deformations

We note that any metric ◦
� gαβ defining an exact solution of the vacuum Einstein equations

can be represented in the form (50). Then, any metric ◦
� g̃αβ(θ) (B.2) from a family of

new solutions generated by the first type parametric transform can be written as (54) and

related via certain polarization functions of type (55), in the parametric case depending

on parameter θ, i.e. ηα(θ) = (ηi(θ), ηa(θ)) and ηa
i (θ). Roughly speaking, any parametric

transform can be represented as a generalized class of anholonomic frame transforms

additionally parametrized by θ and adapted to preserve the (n+m)–splitting structure.10

The corresponding frame transforms (B.5) and (B.6) are parametrized, respectively, by

matrices of type (60) and (61), also ”labelled” by θ. Such nonholonomic parametric

deformations
◦
� g = ◦

� g ⊕Ň
◦
� h −→ ◦

� g̃(θ) = ◦
� g̃(θ)⊕N(θ)

◦
� h̃(θ) (62)

are defined by the frame matrices,

◦
� A

α
α (u) =

⎡⎢⎣ δ
i

i − ◦
� N

b
j (u)δ

a
b

0 δ a
a

⎤⎥⎦ , (63)

generating the d–metric ◦
� gαβ = ◦

� A
α

α
◦
� A

β

β
◦
� gαβ and

Ã α
α (u, θ) =

⎡⎢⎣√|ηi(u, θ)|δ i
i −ηa

i (u, θ) ◦� N
b
j (u)δ

a
b

0
√
|ηa(u, θ)|δ a

a

⎤⎥⎦ , (64)

generating the d–metric ◦
�
g̃αβ(θ) = Ã α

α Ã
β

β
◦
�
gαβ. Using the matrices (63) and (64), we

can compute the matrix of parametric transforms

B̃ α′
α = Ã α

α
◦
� A

α′
α , (65)

like in (B.7), but for ”boldfaced’ objects, where ◦
�
A α′

α is inverse to ◦
�
A α

α′ , 11 and define

the target set of metrics in the form

◦
�
g̃αβ = B̃ α′

α (u, θ) B̃ β′
β (u, θ) ◦

�
gα′β′ .

There are two substantial differences from the case of usual anholonomic frame trans-

forms (59) and the case of parametric deformations (62). The first one is that the metric ǧ

was not constrained to be an exact solution of the Einstein equations like it was required

for ◦
� g. The second one is that even g can be restricted to be an exact vacuum solution,

generated by a special type of deformations (58), in order to get an ansatz of type (44),

an arbitrary metric from a family of solutions ◦
�
g̃αβ(θ) will not be parametrized in a form

10 It should be emphasized that such constructions are not trivial, for usual coordinate transforms, if at
least one of the primary or target metrics is generic off–diagonal.
11we use a ”boldface” symbol because in this case the constructions are adapted to a (n+m)–splitting
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that the coefficients will satisfy the conditions (45). Nevertheless, even in such cases, we

can consider additional nonholonomic frame transforms when ǧ is transformed into an

exact solution and any particular metric from the set
{ ◦

�
g̃αβ(θ)

}
will be deformed into

an exact solution defined by an ansatz (44) with additional dependence on θ.

By superpositions of nonholonomic deformations, we can parametrize a solution for-

mally constructed following by the parametric method (from a primary solution depend-

ing on variables x2, x3) in the form

◦
�
g̃(θ) = eψ(x2,x3,θ)

[
ε2 dx2 ⊗ dx2 + ε3 dx3 ⊗ dx3

]
(66)

+ε4h
2
0

[
b∗
(
xi, v, θ

)]2
δv ⊗ δv

+ε5

[
b
(
x2, x3, v, θ

)
− b0(x

2, x3, θ)
]2

δy5 ⊗ δy5,

δv = dv + w2

(
x2, x3, v, θ

)
dx2 + w3

(
x2, x3, v, θ

)
dx3,

δy5 = dy5 + n2

(
x2, x3, θ

)
dx2 + n3

(
x2, x3, θ

)
dx3,

with the coefficients restricted to solve the equations (45) but depending additionally on

parameter θ,

ε2ψ
••(θ) + ε3ψ

′′
(θ) = 0, (67)

w′2(θ)− w•3(θ) + w3w
∗
2(θ)− w2(θ)w

∗
3(θ) = 0,

n′2(θ)− n•3(θ) = 0,

for w2(θ) = (b∗(θ))−1 (b(θ)+b0(θ))
• and w3 = (b∗(θ))−1 (b(θ)+b0(θ))

′, where, for instance,

n•3(θ) = ∂2n3(θ) and n′2 = ∂3n2(θ).

One should be noted that even, in general, any primary solution ◦
�
g can not be

parametrized as an ansatz (44), it is possible to define nonholonomic deformations to a

such type generic off–diagonal ansatz ◦
� ǧ or any ǧ, defined by an ansatz (50), which in

its turn can be transformed into a metric of type (66) without dependence on θ.12

Finally, we emphasize that in spite of the fact that both the parametric and an-

holonomic frame transforms can be parametrized in very similar forms by using frame

transforms there is a criteria distinguishing one from another: For a ”pure” parametric

transform, the matrix B̃ α′
α (u, θ) and related Ã α

α and ◦
�
A α′

α are generated by a solution of

the Geroch equations (B.4). If the ”pure” nonholonomic deformations, or their superpo-

sition with a parametric transform, are introduced into consideration, the matrix A α
α (u)

(61), or its generalization to a matrix Ã α
α (64), can be not derived only from solutions

of (B.4). Such transforms define certain, in general, nonintegrable distributions related

to new classes of Einstein equations.

4.3 Two Parameter Transforms of Nonholonomic Solutions

As a matter of principle, any first type parameter transform can be represented as a

generalized anholonomic frame transform labelled by an additional parameter. It should

12 in our formulas we shall not point dependencies on coordinate variables if that will not result in
ambiguities
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be also noted that there are two possibilities to define superpositions of the parameter

transforms and anholonomic frame deformations both resulting in new classes of exact

solutions of the vacuum Einstein equations. In the first case, we start with a parameter

transform and, in the second case, the anholonomic deformations are considered from the

very beginning. The aim of this section is to examine such possibilities.

Firstly, let us consider an exact vacuum solution ◦
� g (44) in Einstein gravity generated

following the anholonomic frame method. Even it is generic off–diagonal and depends

on various types of integration functions and constants, it is obvious that it possess at

least a Killing vector symmetry because the metric does not depend on variable y5. We

can apply the first type parameter transform to a such metric generated by anholonomic

deforms (59). If we work in a coordinate base with the coefficients of ◦
�
g defined in the

form ◦
� gαβ

= ◦
� gαβ, we generate a set of exact solutions

◦
� g̃αβ

(θ′) = B̃ α′
α (θ′) B̃ β′

α (θ′) ◦� gα′β′,

see (B.2), were the transforms (B.7), labelled by a parameter θ′, are not adapted to a

nonholonomic (n+m)–splitting. We can elaborate N–adapted constructions starting with

an exact solution parametrized in the form (54), for instance, like ◦
�
gα′β′ = A α

α′ A
β

β′ ǧαβ ,

with A α
α being of type (61) with coefficients satisfying the conditions (58). The target

’boldface’ solutions are generated as transforms

◦
�
g̃αβ(θ′) = B̃ α′

α (θ′) B̃ β′
α (θ′) ◦

�
gα′β′, (68)

where

B̃ α′
α = Ã α

α
◦
�
A α′

α ,

like in (B.7), but for ”boldfaced’ objects, the matrix ◦
�
A α′

α is inverse to

◦
�
A α

α′ (u) =

⎡⎢⎣√|ηi′ |δ i
i′ −ηb′

i′ Ň
b′
j′ δ

a
b′

0
√
|ηa′|δ a

a′

⎤⎥⎦
and there is considered the matrix

Ã α
α (u, θ′) =

⎡⎢⎣√|ηi η̃i(θ′)|δ i
i′ −ηb

i η̃b
i (θ

′)Ň b
j δ

a
b

0
√
|ηa η̃a(θ′)|δ a

a

⎤⎥⎦ ,

where η̃i(u, θ′), η̃a(u, θ′) and η̃a
i (u, θ′) are gravitational polarizations of type (55).13 Here

it should be emphasized that even ◦
�
g̃αβ(θ′) are exact solutions of the vacuum Einstein

equations they can not be represented by ansatz of type (66), with θ → θ′, because the

mentioned polarizations were not constrained to be of type (58) and satisfy any conditions

of type (67).14

13we do not summarize on repeating two indices if they both are of lower/ upper type
14As a matter of principle, we can deform nonholonomically any solution from the family ◦

� g̃αβ(θ′) to
an ansatz of type (66).
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Now we prove that by using superpositions of nonholonomic and parameter transforms

we can generate two parameter families of solutions. This is possible, for instance, if the

metric ◦
�
gα′β′ form (68), in its turn, was generated as an ansatz of type (66), from another

exact solution ◦
� gα′′β′′ . We write

◦
�
gα′β′(θ) = B̃ α′′

α′ (u, θ) B̃ β′′
β′ (u, θ) ◦

�
gα′′β′′

and define the superposition of transforms

◦
�
g̃αβ(θ′, θ) = B̃ α′

α (θ′) B̃ β′
α (θ′) B̃ α′′

α′ (θ) B̃ β′′
β′ (θ) ◦

�
gα′′β′′ . (69)

It can be considered an iteration procedure of nonholonomic parameter transforms of

type (69) when an exact vacuum solution of the Einstein equations is related via a multi

θ–parameters frame map with another prescribed vacuum solution. Using anholonomic

deformations, one introduces (into chains of such transforms) certain classes of metrics

which are not exact solutions but nonholonomically deformed from, or to, some exact

solutions.

4.4 Multi–parametric Einstein Spaces and Ricci Flows

Let us denote by
←→
θ =

(
kθ = θ′, 2θ, ..., θ = 1θ,

)
a chain of nonholonomic parametric

transforms (it can be more general as (69), beginning with an arbitrary metric gα′′β′′)

resulting in a metric g̃αβ(
←→
θ ). Any step of nonholonomic parametric and/ or frame

transforms are parametrize matrices of type (64), (65) or (68). Here, for simplicity, we

consider two important examples when g̃αβ(
←→
θ ) will generate solutions of the nonholo-

nomic Einstein equations or Ricci flow equations.

4.4.1 Example 1:

We get a multi–parametric ansatz of type (15) with h∗4 �= 0 and h∗5 �= 0 if g̃αβ(
←→
θ ) is of

type

◦g(
←→
θ ) = ε1 dx1 ⊗ dx1 + ε2g2(

←→
θ , xî) dx2 ⊗ dx2

+ε3g3(
←→
θ , xî) dx3 ⊗ dx3

+ε4h
2
0(
←→
θ , xi)

[
f ∗
(←→

θ , xi, v
)]2

|ς
(←→

θ , xi, v
)
| δv ⊗ δv

+ε5

[
f
(←→

θ , xi, v
)
− f0(

←→
θ , xi)

]2

δy5 ⊗ δy5, (70)

δv = dv + wk

(←→
θ , xi, v

)
dxk, δy5 = dy5 + nk

(←→
θ , xi, v

)
dxk,

the indices with ”hat” running the values î, ĵ, ... = 2, 3, where gk̂

(←→
θ , xî

)
are multi–

parametric families of solutions of the 2D equation (20) for given sources Υ4

(←→
θ , xî

)
,

ς
(←→

θ , xi, v
)

= ς[0]

(←→
θ , xi

)
− ε4

8
h2

0(
←→
θ , xi)×∫

Υ2(
←→
θ , xk̂, v)f ∗

(←→
θ , xi, v

) [
f
(←→

θ , xi, v
)
− f0(

←→
θ , xi)

]
dv,
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and the N–connection N4
i = wi(

←→
θ , xk, v), N5

i = ni(
←→
θ , xk, v) computed

wi

(←→
θ , xk, v

)
= −

∂iς
(←→

θ , xk, v
)

ς∗
(←→

θ , xk, v
) , (71)

nk

(←→
θ , xk, v

)
= nk[1]

(←→
θ , xi

)
+ nk[2]

(←→
θ , xi

)
× (72)

∫ [
f ∗
(←→

θ , xi, v
)]2

[
f
(←→

θ , xi, v
)
− f0(xi)

]3 ς
(←→

θ , xi, v
)

dv,

define an exact solution of the Einstein equations (7). We emphasize that such solu-

tions depend on an arbitrary nontrivial function f
(←→

θ , xi, v
)

, with f ∗ �= 0, integration

functions f0(
←→
θ , xi), h2

0(
←→
θ , xi), ς[0]

(←→
θ , xi

)
, nk[1]

(←→
θ , xi

)
, nk[2]

(←→
θ , xi

)
and sources

Υ2(
←→
θ , xk̂, v), Υ4

(←→
θ , xî

)
. Such values for the corresponding signatures εα = ±1 have

to be defined by certain boundary conditions and physical considerations. We note that

formulas (71) and (72) state symbolically that at any intermediary step from the chain←→
θ one construct the solution following the respective formulas (27) and (28). The fi-

nal aim, is to get a set of metrics (70), parametrized by
←→
θ , when for fixed values of

θ–parameters, we get solutions of type (26), for the vacuum Einstein equations for the

canonical d–connection.

4.4.2 Example 2:

We consider a family of ansatz, labelled by a set of parameters
←→
θ and χ (as a matter of

principle, we can identify the Ricci flow parameter χ with any θ from the set
←→
θ consid-

ering that the evolution parameter is also related to the invariance of Killing equations,

see Appendix B),

λ
� g(
←→
θ , χ) = eψ(

←→
θ ,x2,x3,χ)

[
ε2 dx2 ⊗ dx2 + ε3 dx3 ⊗ dx3

]
+ (73)

h4

(←→
θ , x2, x3, v, χ

)
δv ⊗ δv

+h5

(←→
θ , x2, x3, v, χ

)
χδy5 ⊗ χδy5,

δv = dv + w2

(←→
θ , x2, x3, v

)
dx2 + w3

(←→
θ , x2, x3, v

)
dx3,

χδy5 = dy5 + n2

(←→
θ , x2, x3, χ

)
[dx2 + dx3],

which for any fixed set
←→
θ is of type (48) with the coefficients are subjected to the

conditions (49), in our case generalized in the form

ε2ψ
••(
←→
θ , χ) + ε3ψ

′′
(
←→
θ , χ) = λ,

h∗5(
←→
θ )φ(

←→
θ )/h4(

←→
θ )h5(

←→
θ ) = λ, (74)

w′2(
←→
θ )− w•3(

←→
θ ) + w3(

←→
θ )w∗2(

←→
θ )− w2(

←→
θ )w∗3(

←→
θ ) = 0,

n′2(
←→
θ , χ)− n•2(

←→
θ , χ) = 0,
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for wî = ∂̂iφ/φ∗, see (25), being compatible with (37) and (38) and considered that

finally on solve the Einstein equations for given surces Υ4 = λ and Υ2 = λ. The metrics

(73) define self–consistent evolutions of a multi–parametric class of general solutions of

the Ricci flow equations (12)–(14) transformed equivalently in the form (20)–(23). The

additional constraints (74) define multi–parametric integral subvarieties (foliations) when

the evolutions are selected for the Levi Civita connections.

5. Summary and Discussion

In this work, we have developed an unified geometric approach to constructing exact

solutions in gravity and Ricci flow theories following superpositions of anholonomic frame

deformations and multi–parametric transforms with Killing symmetries.

The anholonomic frame method, proposed for generalized Finsler and Lagrange the-

ories and restricted to the Einstein and string gravity, applies the formalism of nonholo-

nomic frame deformations [20, 21, 23, 18] (see outline of results in [19] and references

therein) when the gravitational field equations transform into systems of nonlinear par-

tial differential equations which can be integrated in general form. The new classes of

solutions are defined by generic off–diagonal metrics depending on integration functions

on one, two and three/ four variables (if we consider four or five dimensional, in brief, 5D

or 4D, spacetimes). The important property of such solutions is that they can be gener-

alized for effective cosmological constants induced by certain locally anisotropic matter

field interactions, quantum fluctuations and/or string corrections and from Ricci flow

theory.

In general relativity, there is also a method elaborated in Refs. [31, 32] as a gen-

eral scheme when one (two) parameter families of exact solutions are defined by any

source–free solutions of Einstein’s equations with one (two) Killing vector field(s) (for

nonholonomic manifolds, we call such transforms to be one-, two- or multi–parameter

nonholonomic deformations/ transforms). A successive iteration procedure results in a

class of solutions characterized by an infinite number of parameters for a non–Abelian

group involving arbitrary functions on one variable.

Both the parametric deformation techniques combined with nonholonomic transforms

state a number of possibilities to construct ”target” families of exact solutions and evo-

lution scenarios starting with primary metrics not subjected to the conditions to solve

the Einstein equations. The new classes of solutions depend on group like and flow pa-

rameters and on sets of integration functions and constants resulting from the procedure

of integrating systems of partial differential equations to which the field equations are

reduced for certain off–diagonal metric ansatz and generalized connections. Constraining

the integral varieties, for a corresponding subset of integration functions, the target so-

lutions are determined to define Einstein spacetimes and their Ricci flow evolutions. In

general, such configurations are nonholonomic but can constrained to define geometric

evolutions for the Levi Civita connections.
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A The Anholonomic Frame Method

We outline the geometry of nonholonomic frame deformations and nonlinear connection

(N–connection) structures [18, 19].

Let us consider a (n + m)–dimensional manifold V enabled with a prescribed frame

structure (1) when frame transforms are linear on N b
i (u),

A α
α (u) =

⎡⎢⎣ e i
i (u) −N b

i (u)e a
b (u)

0 e a
a (u)

⎤⎥⎦ , (A.1)

Aβ
β(u) =

⎡⎢⎣ ei
i(u) N b

k(u)ek
i (u)

0 ea
a(u)

⎤⎥⎦ , (A.2)

where i, j, .. = 1, 2, ..., n and a, b, ... = n + 1, n + 2, ...n + m and u = {uα = (xi, ya)} are

local coordinates. The geometric constructions will be adapted to a conventional n + m

splitting stated by a set of coefficients N = {Na
i (u)} defining a nonlinear connection

(N–connection) structure as a nonintegrable distribution

TV =hV⊕vV (A.3)

with a conventional horizontal (h) subspace, hV, (with geometric objects labelled by

”horizontal” indices i, j, ...) and vertical (v) subspace vV (with geometric objects labelled

by indices a, b, ...). The ”boldfaced” symbols will be used to emphasize that certain spaces

(geometric objects) are provided (adapted) with (to) a N–connection structure N.

The transforms (A.1) and (A.2) define a N–adapted frame structure

eν = (ei = ∂i −Na
i (u)∂a, ea = ∂a) , (A.4)

and the dual frame (coframe) structure

eμ =
(
ei = dxi, ea = dya + Na

i (u)dxi
)
. (A.5)

The frames (A.5) satisfy the certain nonholonomy (equivalently, anholonomy) relations

of type (2),

[eα, eβ] = eαeβ − eβeα = W γ
αβeγ, (A.6)

with anholonomy coefficients

W b
ia = ∂aN

b
i and W a

ji = Ωa
ij = ej(N

a
i )− ej(N

a
i ). (A.7)

A distribution (A.3) is integrable, i.e. V is a foliation, if and only if the coefficients defined

by N = {Na
i (u)} satisfy the condition Ωa

ij = 0. In general, a spacetime with prescribed
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nonholonomic splitting into h- and v–subspaces can be considered as a nonholonomic

manifold [18, 17, 34].

Let us consider a metric structure on V,

ğ = g
αβ

(u) duα ⊗ duβ (A.8)

defined by coefficients

g
αβ

=

⎡⎢⎣ gij + Na
i N b

j hab N e
j hae

N e
i hbe hab

⎤⎥⎦ . (A.9)

This metric is generic off–diagonal, i.e. it can not be diagonalized by any coordinate

transforms if Na
i (u) are any general functions. We can adapt the metric (A.8) to a N–

connection structure N = {Na
i (u)} induced by the off–diagonal coefficients in (A.9) if we

impose that the conditions

ğ(ei, ea) = 0, equivalently, g
ia
−N b

i hab = 0,

where g
ia

� g(∂/∂xi, ∂/∂ya), are satisfied for the corresponding local basis (A.4). In this

case N b
i = habg

ia
, where hab is inverse to hab, and we can write the metric ğ (A.9) in

equivalent form, as a distinguished metric (d–metric) adapted to a N–connection struc-

ture,

g = gαβ (u) eα ⊗ eβ = gij (u) ei ⊗ ej + hab (u) ea ⊗ eb, (A.10)

where gij � g (ei, ej) and hab � g (ea, eb) . The coefficients gαβ and g
αβ

= gαβ are related

by formulas

gαβ = A α
α A

β

β gαβ, (A.11)

or

gij = e i
i e

j

j gij and hab = e a
a e b

b gab,

where the frame transform is given by matrices (A.1) with e i
i = δ i

i and e a
a = δ a

a . We

shall call some geometric objects, for instance, tensors, connections,..., to be distinguished

by a N–connection structure, in brief, d–tensors, d–connections,... if they are stated by

components computed with respect to N–adapted frames (A.4) and (A.5). In this case,

the geometric constructions are elaborated in N–adapted form, i.e. they are adapted to

the nonholonomic distribution (A.3).

Any vector field X = (hX, vX) on TV can be written in N–adapted form as a d–

vector

X =Xαeα = (hX = X iei, vX = Xaea).

In a similar form, we can ’N–adapt’ any tensor object and get a d–tensor.

By definition, a d–connection is adapted to the distribution (A.3) and splits into

h– and v–covariant derivatives, D = hD + vD, where hD = {Dk =
(
Li

jk, L
a
bk

)
} and

vD = {Dc =
(
Ci

jk, C
a
bc

)
} are correspondingly introduced as h- and v–parametrizations of

the coefficients

Li
jk = (Dkej)�ei, La

bk = (Dkeb)�ea, Ci
jc = (Dcej)�ei, Ca

bc = (Dceb)�ea.
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The components Γγ
αβ =

(
Li

jk, L
a
bk, C

i
jc, C

a
bc

)
, with the coefficients defined with respect to

(A.5) and (A.4), completely define a d–connection D on a N–anholonomic manifold V.

The simplest way to perform a local covariant calculus by applying d–connections is to

use N–adapted differential forms and to introduce the d–connection 1–form Γα
β = Γα

βγe
γ ,

when the N–adapted components of d-connection Dα = (eα�D) are computed following

formulas

Γγ
αβ (u) = (Dαeβ)�eγ , (A.12)

where ”�” denotes the interior product. We define in N–adapted form the torsion

T = {T α} (3),

T α � Deα = deα + Γα
β ∧ eα, (A.13)

and curvature R = {Rα
β} (4),

Rα
β � DΓα

β = dΓα
β − Γγ

β ∧ Γα
γ . (A.14)

The coefficients of torsion T (A.13) of a d–connection D (in brief, d–torsion) are

computed with respect to N–adapted frames (A.5) and (A.4),

T i
jk = Li

jk − Li
kj, T i

ja = −T i
aj = Ci

ja, T a
ji = Ωa

ji,

T a
bi = T a

ib =
∂Na

i

∂yb
− La

bi, T a
bc = Ca

bc − Ca
cb, (A.15)

where, for instance, T i
jk and T a

bc are respectively the coefficients of the h(hh)–torsion

hT (hX, hY ) and v(vv)–torsion vT ( vX, vY ). In a similar form, we can compute the

coefficients of a curvature R, d–curvatures.

There is a preferred, canonical d–connection structure, D̂, on a N–anholonomic man-

ifold V constructed only from the metric and N–connection coefficients [gij, hab, N
a
i ] and

satisfying the conditions D̂g = 0 and T̂ i
jk = 0 and T̂ a

bc = 0. It should be noted that,

in general, the components T̂ i
ja, T̂ a

ji and T̂ a
bi are not zero. This is an anholonomic

frame (equivalently, off–diagonal metric) effect. Hereafter, we consider only geometric

constructions with the canonical d–connection which allow, for simplicity, to omit ”hats”

on d–objects. We can verify by straightforward calculations that the linear connection

Γγ
αβ =

(
Li

jk, L
a
bk, C

i
jc, C

a
bc

)
with the coefficients defined

Dek
(ej) = Li

jkei, Dek
(eb) = La

bkea, Deb
(ej) = Ci

jbei, Dec(eb) = Ca
bcea,

where

Li
jk =

1

2
gir (ekgjr + ejgkr − ergjk) ,

La
bk = eb(N

a
k ) +

1

2
hac

(
ekhbc − hdc ebN

d
k − hdb ecN

d
k

)
, (A.16)

Ci
jc =

1

2
gikecgjk, Ca

bc =
1

2
had (echbd + echcd − edhbc) ,

uniquely solve the conditions stated for the canonical d–connection.
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The Levi Civita linear connection � = { �Γ
α
βγ}, uniquely defined by the conditions

∇T = 0 and �ğ = 0, is not adapted to the distribution (A.3). Denoting �Γ
α
βγ =

( �L
i
jk, �L

a
jk, �L

i
bk, �L

a
bk, �C

i
jb, �C

a
jb, �C

i
bc, �C

a
bc), for

�ek
(ej) = �L

i
jkei + �L

a
jkea, �ek

(eb) = �L
i
bkei + �L

a
bkea,

�eb
(ej) = �C

i
jbei + �C

a
jbea, �ec(eb) = �C

i
bcei + �C

a
bcea,

after a straightforward calculus we get

�L
i
jk = Li

jk, �L
a
jk = −Ci

jbgikh
ab − 1

2
Ωa

jk, (A.17)

�L
i
bk =

1

2
Ωc

jkhcbg
ji − 1

2
(δi

jδ
h
k − gjkg

ih)Cj
hb,

�L
a
bk = La

bk +
1

2
(δa

c δ
b
d + hcdh

ab) [Lc
bk − eb(N

c
k)] ,

�C
i
kb = Ci

kb +
1

2
Ωa

jkhcbg
ji +

1

2
(δi

jδ
h
k − gjkg

ih)Cj
hb,

�C
a
jb = −1

2
(δa

c δ
d
b − hcbh

ad)
[
Lc

dj − ed(N
c
j )
]
, �C

a
bc = Ca

bc,

�C
i
ab = −gij

2

{[
Lc

aj − ea(N
c
j )
]
hcb +

[
Lc

bj − eb(N
c
j )
]
hca

}
,

where Ωa
jk are computed as in the second formula in (A.7).

For our purposes, it is important to state the conditions when both the Levi Civita

connection and the canonical d–connection may be defined by the same set of coefficients

with respect to a fixed frame of reference. Following formulas (A.16) and (A.17), we

obtain equality �Γ
α
βγ = Γγ

αβ if

Ωc
jk = 0 (A.18)

(there are satisfied the integrability conditions and our manifold admits a foliation struc-

ture),

�C
i
kb = Ci

kb = 0 (A.19)

and Lc
aj − ea(N

c
j ) = 0, which, following the second formula in (A.16), is equivalent to

ekhbc − hdc ebN
d
k − hdb ecN

d
k = 0. (A.20)

We conclude this section with the remark that if the conditions (A.18), (A.19) and

(A.20) hold true for the metric (A.8), equivalently (A.10), the torsion coefficients (A.15)

vanish. This results in respective equalities of the coefficients of the Riemann, Ricci and

Einstein tensors (the conditions (6) being satisfied) for two different linear connections.

B The Killing Vectors Formalism

The first parametric method (on holonomic (pseudo) Riemannian spaces, it is also called

the Geroch method [31]) proposes a scheme of constructing a one–parameter family of

vacuum exact solutions (labelled by tilde ”̃” and depending on a real parameter θ)

◦
� g̃(θ) = ◦

� g̃αβ eα ⊗ eβ (B.1)
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beginning with any source–free solution ◦
� g = { ◦� gαβ} with Killing vector ξ = {ξα}

symmetry satisfying the conditions �E = 0 (Einstein equations) and ∇ξ(
◦
�
g) = 0 (Killing

equations). We denote this ’primary’ spacetime (V, ◦
�
g, ξα) and follow the conventions:

The class of metrics ◦
� g̃ is generated by the transforms

◦
� g̃αβ = B̃ α′

α (u, θ) B̃ β′
β (u, θ) ◦� gα′β′ (B.2)

where the matrix B̃ α′
α is parametrized in the form when

◦
�
g̃αβ = λλ̃−1( ◦

�
gαβ − λ−1ξαξβ) + λ̃μαμβ (B.3)

for

λ̃ = λ[(cos θ − ω sin θ)2 + λ2 sin2 θ]−1

μτ = λ̃−1ξτ + ατ sin 2θ − βτ sin2 θ.

A rigorous proof [31] states that the metrics (B.1) define also exact vacuum solutions

with �Ẽ = 0 if and only if the values ξα, ατ , μτ from (B.3), subjected to the conditions

λ = ξαξβ
◦
� g

αβ, ω = ξγαγ , ξ
γμγ = λ2 + ω2 − 1, solve the equations

∇αω = εαβγτ ξ
β ∇γξτ , ∇[ααβ] =

1

2
εαβγτ ∇γξτ , (B.4)

∇[αμβ] = 2λ ∇αξβ + ωεαβγτ ∇γξτ ,

where the Levi Civita connection ∇ is defined by ◦
� g and εαβγτ is the absolutely antisym-

metric tensor. The existence of solutions for (B.4) (Geroch’s equations) is guaranteed by

the Einstein’s and Killing equations.

The first type of parametric transforms (B.2) can be parametrized by a matrix B̃ α′
α

with the coefficients depending functionally on solutions for (B.4). Fixing a signature

gαβ = diag[±1,±1, ....± 1] and a local coordinate system on (V, ◦
�
g, ξα), we define a local

frame of reference eα′ = A
α

α′ (u)∂α, like in (1), for which

◦
� gα′β′ = A

α
α′ A

β

β′ gαβ . (B.5)

We note that A
α

α′ have to be constructed as a solution of a system of quadratic algebraic

equations (B.5) for given values gαβ and ◦
�
gα′β′ . In a similar form, we can write ẽα =

Ã α
α (θ, u)∂α and

◦
� g̃αβ = Ã α

α Ã
β

β gαβ. (B.6)

The method guarantees that the family of spacetimes (V, ◦
�
g̃) is also vacuum Einstein but

for the corresponding families of Levi Civita connections ∇̃. In explicit form, the matrix

B̃ α′
α (u, θ) of parametric transforms can be computed by introducing the relations (B.5),

(B.6) into (B.2),

B̃ α′
α = Ã α

α A α′
α (B.7)

where A α′
α is inverse to A α

α′ .
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The second parametric method [32] was similarly developed which yields a family of

new exact solutions involving two arbitrary functions on one variables, beginning with

any two commuting Killing fields for which a certain pair of constants vanish (for instance,

the exterior field of a rotating star). By successive iterating such parametric transforms,

one generates a class of exact solutions characterized by an infinite number of parameters

and involving arbitrary functions. For simplicity, in this work we shall consider only a

nonholonomic version of the first parametric method.
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1. Introduction

1.1 How Many Dimensions?

The problem of the ultimate geometrical structure of the physical world — both at a large

and a small scale —is an old-debated one. After Einstein, the generally accepted view

is that physical phenomena do occur in a four-dimensional manifold, with three spatial

and one time dimensions, and that space-time possesses a global Riemannian structure,

whereas it is locally flat (i.e. endowed with a Minkowskian geometry). Moreover, Ein-

stein taught us that introducing extra dimensions (time, in this case) can provide a

better description of (and even simplify) the laws of nature (electromagnetism for Special

Relativity and gravity for General Relativity).

This latter teaching by Einstein was followed by Kaluza [1] and Klein [2], who added

a fifth dimension to the four space-time ones in order to unify electromagnetism and

gravitation (let us recall however that Nordström [3] was the first to realize that in a five-

dimensional spacetime the field equations do split naturally into Einstein’s and Maxwell’s

equations). Although unsuccessful, the Kaluza-Klein (KK) theory constituted the first

attempt to unification of fundamental interactions within a multidimensional space-time.

In this spirit, it was later generalized and extended to higher dimensions, in the hope of

achieving unification of all interactions, including weak and strong forces [4]. However,

a true revival of multidimensional theories starting from 1970 was due to the advent of

string theory [5] and supersymmetry [6]. As is well known, their combination, superstring

theory [7], provides a framework for gravity quantization. Modern generalizations [8,9]

of the Kaluza-Klein scheme require a minimum number of 11 dimensions in order to

accommodate the Standard Model of electroweak and strong interactions; let us recall

that 11 is also the maximum number of dimensions required by supergravity theories [10].

For an exhaustive review of Kaluza-Klein theories we refer the reader to ref.[11].

A basic problem in any multidimensional scheme is the hidden nature of the extra

dimensions, namely to explain why the Universe looks four-dimensional. A possible

solution (first proposed by Klein) is assuming that each extra dimension is compactified,

namely it is curled up in a circle, which from a mathematical standpoint is a compact

set, whence the name (cylindricity condition)2. In such a view, therefore, space-time is

endowed with a cylindrical geometrical structure. The radius R of the circle is taken to

be so small (roughly of the order of the Planck length) as to make the extra dimension

unobservable at distances exceeding the compactification scale.

In the last decade of the past century the hypothesis of non-compactified extra di-

mensions began to be taken into serious consideration. Five-dimensional theories of

the Kaluza-Klein type, but with no cylindricity condition on the extra dimension, were

built up e.g. by Wesson (the so-called ”Space-Time-Mass” (STM) theory , in which the

fifth dimension is the rest mass [9]) and by Fukui (”Space-Time-Mass-(Electric) Charge”

2 Compactification of the extra dimensions can be achieved also by assuming compact spaces different
from (and more complex than) a circle.
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(S.T.M.C.) theory, with charge as extra dimension [12]). In such a kind of theories, the

(non-compactified) extra dimension is a physical quantity, but not a spatial one in its

strict sense. More recently, instead, the idea of a true hyperspace, with large space di-

mensions, was put forward (starting from the 1998 pioneering ADD model [13]). The

basic assumption is that gravity is the only force aware of the extra space dimensions.

This leads to view the physical world as a multidimensional space (”bulk”) in which the

ordinary space is represented by a three-dimensional surface (”3-d. brane”). Electro-

magnetic, weak and strong forces are trapped within the brane, and do not ”feel” the

extra space dimensions. On the contrary, gravitons escape the brane and spread out the

whole hyperspace. In this picture, the reason the gravitational force appears to be so

weak is because it is diluted by the extra dimensions. In the ADD scheme (and similar),

the size L of the extra dimensions is related to their number. Only one extra dimension

would have a size greater than the solar system, and therefore would have been already

discovered. For two extra dimensions, it is possible to show that L ∼ 0.2mm, whereas for

three it is L ∼ 1nm . In this framework, therefore, the extra dimensions are still finite

(although not microscopic as in the KK theories).

The ADD model has been also modified in order to allow for infinite (in the sense of

unlimited) extra dimensions. In the ”warped-geometric” model [14], it is still assumed

that the ordinary space is confined to a 3-d. brane embedded in a bulk. Only the gravitons

can escape the brane along the extra dimension, but they feel the gravitational field of

the brane and therefore do not venture out of it to long distances. This amounts to say

that the geometry of the extra dimension is warped (the five-dimensional metric of the

hyperspace contains an exponentially decreasing ”warp factor”, namely the probability

of finding a graviton decays outside the brane along the extra dimension). An analogous

result can be obtained by hypothesizing the existence of two branes, put a distance L

apart along the extra dimension, one trapping gravity and the other not. If the two

branes have opposite tension, the geometry of space between the branes is warped too.

Models with both an infinite, warped extra dimension and a finite compact one have been

also considered [15].

Needless to say, it is impossible to get direct evidence of extra dimensions. However,

one can probe them in an indirect way, because the existence of extra dimensions has

several observational consequences, both in astrophysics and cosmology and in particle

physics, depending on the model considered. In compactified theories, new excited states

appear within the extra dimensions (Kaluza-Klein towers), with energies En = nhc/R.

They affect the carriers of the electromagnetic, weak and strong forces by turning them

into a family of increasingly massive clones of the original particle, thus magnifying

the strengths of the nongravitational forces. Such effects can therefore be detected in

particle accelerators. A research carried at CERN’s Large Electron-Positron Collider

(LEP) provided no evidence of such extradimensional influences at up to an energy of 4

TeV . This result puts a limit of 0.5× 10−19m to the size L of the extra dimensions [16].

The ADD model foresees deviations from the Newton’s inverse-square law of gravity for

objects closer together than the size of the extra dimension. Such a stronger gravitational
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attraction (∼ r−4) could be observed in tabletop experiments (of the Cavendish type).

In general, in models with a 3-d. brane, gravitons leaving the brane into, or entering

it from, the extra dimensions could provide signatures for the hyperspace in accelerator

experiments. In the former case, one has to look for missing energy in a collision process,

due to the disappearing of the gravitons into the extra dimensions. In the latter, since

gravitons can decay into pairs of photons, electrons, or muons, detecting an excess of

these particles at specific energy and mass levels would indirectly provide evidence for

the existence of dimensions beyond our own.

It must also be noted that other fields besides the gravitational one are expected to

be present in the bulk. Bulk gauge fields are associated with ”new forces”, the strength

of which is predicted to be roughly a million times stronger than gravity. These stronger

forces can manifest themselves in different ways, and could be detectable also in tabletop

experiments. For example, they can simulate antigravity effects on submillimeter distance

scales, since gauge forces between like-charged objects are naturally repulsive.

The hypothesis of a multidimensional space-time allows one not only to unify interac-

tions and quantize gravity, but to solve or at least to address from a more basic viewpoint

a number of fundamental problems still open in particle physics and astrophysics. Let

us mention for instance the weakness of the gravitational force, the abundance of matter

over antimatter, the extraordinarily large number of elementary particles, the nature of

dark matter and the smallness of the cosmological constant.

1.2 Deforming Space-Time

The introduction of extra dimensions is not the only way to generalizing the four-

dimensional Einsteinian picture. Another road which was followed is preserving the

four-dimensional spacetime manifold, by however equipping it with a global and/or local

geometry different from the Minkowskian or the Riemannian one. These generalized 4-d.

metrics are mainly of the Finsler type [17], like the Bogoslowski [18] and the isotopic ones

[19]. Such a kind of approach points essentially at accounting for possible violations of

standard relativity and Lorentz invariance.

In this connection, two of us (F.C. and R.M.) introduced a generalization of Special

Relativity, called Deformed Special Relativity (DSR) [20, 21]. It was essentially aimed, in

origin, at dealing in a phenomenological way with a possible breakdown of local Lorentz

invariance (LLI). Actually the experimental data of some physical processes seem to

provide some intriguing evidence of a (local) breakdown of Lorentz invariance. All the

phenomena considered show indeed an inadequacy of the Minkowski metric in describ-

ing them, at different energy scales and for the four fundamental interactions involved

(electromagnetic, weak, gravitational and strong). On the contrary, they apparently ad-

mit a consistent interpretation in terms of a deformed Minkowski space-time, with metric

coefficients depending on the energy exchanged in the process considered [20].

DSR is therefore a (four-dimensional) generalization of the (local) space-time struc-

ture based on an energy-dependent deformation of the usual Minkowski geometry. What’s
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more, the corresponding deformed metrics obtained from the experimental data provide

an effective dynamical description of the interactions ruling the phenomena considered

(at least at the energy scale and in the energy range considered). Then DSR implements,

for all four interactions, the so-called “solidarity principle“, between space-time and in-

teraction (so that the peculiar features of every interaction determine — locally — its

own space-time structure), which — following B. Finzi [21] — can be stated as follows:

“Space-time is solid with interactions, so that their respective properties affect mutually”.

Moreover, it was shown that the deformed Minkowski space with energy-dependent

metric admits a natural embedding in a five-dimensional space-time, with energy as extra

dimension [20, 22]. Namely, the four-dimensional, deformed, energy-dependent space-

time is only a manifestation (a ”shadow”, to use the famous word of Minkowski) of a

larger, five-dimensional space, in which energy plays the role of the fifth dimension. The

new formalism one gets in this way (Deformed Relativity in Five Dimensions, DR5 ) is

a Kaluza-Klein-like one, the main points of departure from a standard KK scheme being

the deformation of the Minkowski space-time and the use of energy as extra dimension

(this last feature entails, among the others, that the DR5 formalism is noncompactified).

DR5 is therefore a generalization of Einstein’s Relativity sharing both characteristics

of a change of the 4-d Minkowski metric and the presence of extra dimensions.

The purpose of the present paper is to illustrate the DR5 formalism and to give new

results on the isometries of the five-dimensional space of the theory.

The paper is organized as follows. Sect. 2 contains a brief review of the formalism of

the four-dimensional deformed Minkowski space and gives the explicit expressions of the

deformed metrics obtained, for the fundamental interactions, by the phenomenological

analysis of the experimental data. In Sect. 3 we illustrate the main features of the

DR5 scheme, namely its geometrical structure — based on a five-dimensional space �5

in which the four-dimensional space-time is deformed and the energy E plays the role

of fifth dimension — and the solution of the related five-dimensional Einstein equations.

In particular, we consider the special case of physical relevance in which the metric

coefficients are powers of the energy (Power Ansatz). In Sects.4-5 the problem of the

Killing isometries of �5 is discussed in detail. In order to solve the five-dimensional

Killing equations, we introduce an hypothesis of functional independence, which allows

us to get explicit solutions (in the Power Ansatz) for the four phenomenological metrics of

fundamental interactions. Sect.6 contains a preliminary discussion of the related Killing

algebras. Concluding remarks are put forward in Sect. 7.

2. Deformed Special Relativity: A Survey

2.1 Deformed Minkowski Space-Time

Let us briefly review the main features of the formalism of the (four-dimensional) de-

formed Minkowski space [20].

If M(x, gSR, R) is the usual Minkowski space of the standard Special Relativity (SR)
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(where x is a fixed Cartesian frame), endowed with the metric tensor

gSR = diag(1,−1,−1,−1), (1)

the deformed Minkowski spaceM̃(x, gDSR) is the same vector space on the real field as

M , with the same frame x, but with metric gDSR given by3

gDSR(E) = diag(b2
0(E),−b2

1(E),−b2
2(E) ,−b2

3(E))

ESC off
= δμν

[
b2
0(E)δμ0 − b2

1(E)δμ1 − b2
2(E)δμ2 − b2

3(E)δμ3

]
, , (2)

where the metric coefficients
{
b2
μ(E)

}
(μ = 0, 1, 2, 3) are (dimensionless) positive func-

tions of the energy E of the process considered4: b2
μ = b2

μ(E). The generalized interval in

M̃ reads therefore

ds2 = b2
0(E)c2dt2 − b2

1(E)dx2 − b2
2(E)dy2 − b2

3(E)dz2 =

= gμν,DSRdxμdxν = dx ∗ dx (3)

with xμ = (x0, x1, x2, x3) = (ct, x, y, z), c being the usual light speed in vacuum. The last

equality in (3) defines the scalar product ∗ in the deformed Minkowski space M̃ . The

relativity theory based on M̃ is called Deformed Special Relativity, DSR[20].

We want to stress that — although uncommon — the use of an energy-dependent

space-time metric is not new. Indeed, it can be traced back to Einstein himself. In

order to account for the modified rate of a clock in presence of a gravitational field,

Einstein first generalized the expression of the special-relativistic interval with metric

(1), by introducing a ”time curvature” as follows:

ds2 =

(
1 +

2φ

c2

)
c2dt2 − dx2 − dy2 − dz2, (4)

where φ is the Newtonian gravitational potential. In the present scheme, the reason

whereby one considers energy as the variable upon which the metric coefficients depend

is twofold. On one side, it has a phenomenological basis in the fact that we want to

exploit this formalism in order to derive the deformed metrics corresponding to physi-

cal processes, whose experimental data are just expressed in terms of the energy of the

process considered. On the other hand, one expects on physical grounds that a possible

deformation of the space-time to be intimately related to the energy of the concerned phe-

nomenon (in analogy to the gravitational case, where space-time curvature is determined

by the energy-matter distribution).

3 In the following, Greek and Latin indices will label space-time (μ = 0, 1, 2, 3) and space coordinates
(i = 1, 2, 3), respectively. Moreover, we shall employ the notation ”ESCon” (”ESCoff”) to mean that
the Einstein sum convention on repeated indices is (is not) used.
4 Quantity E is to be understood as the energy measured by the detectors via their electromagnetic
interaction in the usual Minkowski space.
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Let us recall that the metric (2) is supposed to hold locally, i.e. in the space-time

region where the process occurs. Moreover, it is supposed to play a dynamical role,

thus providing a geometric description of the interaction considered, especially as far as

nonlocal, nonpotential forces are concerned. In other words, each interaction produces

its own metric, formally expressed by the metric tensor gDSR, but realized via different

choices of the set of parameters bμ(E). We refer the reader to ref. [20] for a more detailed

discussion.

It is also worth to notice that the space-time described by the interval (3) actually has

zero curvature, and therefore it is not a ”true” Riemannian space (whence the term ”de-

formation” used to describe such a situation). Therefore, on this respect, the geometrical

description of the fundamental interactions based on the metric (2) is different from that

adopted in General Relativity to describe gravitation. Moreover, for each interaction the

corresponding metric reduces to the Minkowskian one, gμν,SR , for a suitable value of the

energy, E0, characteristic of the interaction considered (see below). But the energy of the

process is fixed, and cannot be changed at will. Thus, although it would be in principle

possible to recover the Minkowski space by a suitable change of coordinates (e.g. by a

rescaling), this would amount to a mere mathematical operation, devoid of any physical

meaning.

Inside the deformed space-time, a maximal causal speed u can be defined, whose role

is analogous to that of the light speed in vacuum for the usual Minkowski space-time. It

can be shown that, for an isotropic 3-dimensional space (b1 = b2 = b3 = b), its expression

is

u =
b0

b
c. (5)

This speed u can be considered as the speed of the interaction ruling the process described

by the deformation of the metric. It is easily seen that there may be maximal causal

speeds which are superluminal, depending on the interaction considered, because

u
≥
<

c⇐⇒ b0

b

≥
<

1. (6)

Starting from the deformed space-time M̃ , one can develop the Deformed Special Rel-

ativity in a straightforward way. For instance, the generalized Lorentz transformations,

i.e. those transformations which preserve the interval (3), for an isotropic three-space

and for a boost, say, along the x -axis, read as follows [20]⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x′ = γ̃(x− vt);

y′ = y;

z′ = z;

t′ = γ̃
(
t− β̃2x

v

)
,

(7)

where v is the relative speed of the reference frames, and

β̃ =
v

u
; (8)
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γ̃ =
(
1− β̃2

)−1/2

. (9)

We refer the reader to [20] for a thorough discussion of the generalized Lorentz transfor-

mations (i.e. the Killing isometries of M̃).

It must be carefully noted that, like the metric, the generalized Lorentz transforma-

tions, too, depend on the energy and on the interaction considered (through the deformed

rapidity parameter β̃: see the expression (5) of the maximal speed u). This means that

one gets different transformation laws for different interactions and for different values of

E, but still with the same functional dependence on the energy, so that the invariance of

the deformed interval (3) is always ensured (provided the process considered does always

occur via the same interaction).

The existence, in DSR, of several coordinate transformations connecting inertial ob-

servers and of more maximal causal speeds, a priori different for each interaction, estab-

lish a connection of this scheme with Lorentzian Relativity (LR) (rather than with the

Einsteinian one, ER), i.e. the version of Special Relativity due to Lorentz and Poincaré

[23]5. These features, rather than constituting drawbacks of LR with respect to the ER

unifying principles of uniqueness and invariance, actually testify the more flexible math-

ematical structure of Lorentzian relativity, thus able to fit the diversified nature of the

different physical forces. We can therefore state that Deformed Special Relativity inherits

the legacy of Lorentzian Relativity (see second ref. [20] for an in-depth discussion of this

point).

From the knowledge of the generalized Lorentz transformations in the deformed

Minkowski space M̃ , it is easy to derive the main kinematical and dynamical laws valid

in DSR. For this topic and further features of DSR the interested reader is referred to

ref. [20].

We want also to stress that Deformed Special Relativity is a theory different from

Doubly Special Relativity (although both of them have the same acronym). The latter

is a generalization of SR in which, besides the speed of light, the Planck lenght is an

invariant quantity too [24]. In spite of their differences, the two formalisms share some

common points, like e.g.: the existence of a generalized energy-momentum dispersion law;

generalized boost transformations; generalized commutation relations for the generators

of the Poincaré algebra; an energy-dependent metric for the Minkowski space-time; a

light speed depending on energy [24-25].

2.2 Description of Interactions by Energy-Dependent Metrics

Let us briefly review the results obtained for the deformed metrics, describing the four

fundamental interactions — electromagnetic, weak, strong and gravitational —, from the

phenomenological analysis of the experimental data [20]. First of all, let us stress that, in

5 Let us however stress that the strict dependence of both the coordinate transformations and the
maximal causal speed on the class of the physical phenomena, to which the (Galileian) Principle of
Relativity applies, is already present in the very foundations of Special Relativity (see refs.[20,21]).
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all the cases considered, one gets evidence for a departure of the space-time metric from

the Minkowskian one (at least in the energy range examined).

The explicit functional form of the DSR metric (2) for the four interactions is as

follows.

1) Electromagnetic interaction. The experiments considered are those on the su-

perluminal propagation of e.m. waves in conducting waveguides with variable section

(first observed at Cologne in 1992) [26]. The introduction, in this framework, of a de-

formed Minkowski space is motivated by ascribing the superluminal speed of the signals

to some nonlocal e.m. effect, inside the narrower part of the waveguide, which can be

described in terms of an effective deformation of space-time inside the barrier region [20].

Since we are dealing with electromagnetic forces (which are usually described by the

Minkowskian metric), we can assume b2
0 = 1 (this is also justified by the fact that all the

relevant deformed quantities depend actually on the ratio b/b0). Assuming moreover an

isotropically deformed three-space (b1 = b2 = b3 = b) 6, one gets [20]

gDSR,e.m.(E) = diag
(
1,−b2

e.m.(E),−b2
e.m.(E),−b2

e.m.(E)
)
; (10)

b2
e.m.(E) =

⎧⎪⎨⎪⎩ (E/E0e.m.)
1/3, 0 ≤ E ≤ E0e.m.

1, E0e.m. ≤ E
=

= 1 + Θ(E0e.m. − E)

[(
E

E0e.m

)1/3

− 1

]
, E > 0. (11)

(where Θ(x) is the Heaviside theta function, stressing the piecewise structure of the

metric). The threshold energy E0e.m. is the energy value at which the metric parameters

are constant, i.e. the metric becomes Minkowskian. The fit to the experimental data

yields

E0,e.m. = (4.5± 0.2)μeV . (12)

Notice that the value obtained for E0 is of the order of the energy corresponding to the

coherence length of a photon for radio-optical waves (Ecoh � 1μeV ).

2) Weak interaction. The experimental input was provided by the data on the

pure leptonic decay of the meson K0
s , whose lifetime τ is known in a wide energy range

(30÷ 350 GeV ) [29] (an almost unique case). Use has been made of the deformed law of

time dilation as a function of the energy, which reads [20]

τ =
τ0[

1−
(

b

b0

)2

+

(
b

b0

)2 (m

E

)2
]1/2

. (13)

6 Notice that the assumption of spatial isotropy for the electromagnetic interaction in the waveguide
propagation is only a matter of convenience, since waveguide experiments do not provide any physical
information on space directions different from the propagation one (the axis of the waveguide). An
analogous consideration holds true for the weak case, too (see below).
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As in the electromagnetic case, an isotropic three-space was assumed, whereas the isochrony

with the usual Minkowski metric (i.e. b2
0 = 1) was derived by the fit of (13) to the exper-

imental data. The corresponding metric is therefore given by

gDSR,weak(E) = diag
(
1,−b2

weak.(E),−b2
weak.(E),−b2

weak.(E)
)
; (14)

b2
weak.(E) =

⎧⎪⎨⎪⎩ (E/E0weak)
1/3, 0 ≤ E ≤ E0weak

1 E0weak ≤ E
= .

= 1 + Θ(E0weak. − E)

[(
E

E0weak

)1/3

− 1

]
, E > 0. (15)

with

E0,weak = (80.4± 0.2)GeV. (16)

Two points are worth stressing. First, the value of E0weak — i.e. the energy value at

which the weak metric becomes Minkowskian — corresponds to the mass of the W -

boson, through which the K0
s -decay occurs. Moreover, the leptonic metric (14)-(15) has

the same form of the electromagnetic metric (10)-(11). Therefore, one recovers, by the

DSR formalism, the well-known result of the Glashow-Weinberg-Salam model that, at the

energy scale E0weak, the weak and the electromagnetic interactions are mixed. We want

also to notice that, in both the electromagnetic and the weak case, the metric parameter

exhibits a ”sub-Minkowskian” behavior, i.e. b(E) approaches 1 from below as energy

increases.

3) Strong interaction. The phenomenon considered is the so-called Bose-Einstein

(BE) effect in the strong production of identical bosons in high-energy collisions, which

consists in an enhancement of their correlation probability [28]. The DSR formalism

permits to derive a generalized BE correlation function, depending on all the four metric

parameters bμ(E) [20]. By using the experimental data on pion pair production, obtained

in 1984 by the UA1 group at CERN [29], one gets the following expression of the strong

metric for the two-pion BE phenomenon [20]:

gDSR,strong(E) =

= diag
(
b2
strong(E),−b2

1,strong(E),−b2
2,strong(E),−b2

strong(E)
)
; (17)

b2
strong(E) =

⎧⎪⎨⎪⎩ 1, 0 ≤ E ≤ E0strong

(E/E0strong)
2, E0strong ≤ E

=

= 1 + Θ(E −E0,strong)

[(
E

E0,strong

)2

− 1

]
, E > 0; (18)
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b2
1,strong(E) =

(√
2/5

)2

; (19)

b2
2,strong = (2/5)2. (20)

with

E0,strong = (367.5± 0.4)GeV. (21)

The threshold energy E0strong is still the value at which the metric becomes Minkowskian.

Let us stress that, in this case, contrarily to the electromagnetic and the weak ones,

a deformation of the time coordinate occurs; moreover, the three-space is anisotropic,

with two spatial parameters constant (but different in value) and the third one variable

with energy in an ”over-Minkowskian” way. It is also worth to recall that the strong

metric parameters bμ admit of a sensible physical interpretation: the spatial parameters

are (related to) the spatial sizes of the interaction region (”fireball”) where pions are

produced, whereas the time parameter is essentially the mean life of the process. We

refer the reader to ref.[20] for further details.

4) Gravitation. It is possible to show that the gravitational interaction, too (at least

on a local scale, i.e. in a neighborhood of Earth) can be described in terms of an energy-

dependent metric, whose time coefficient was derived by fitting the experimental results

on the relative rates of clocks at different heights in the gravitational field of Earth [30].

No information can be derived from the experimental data about the space parameters.

Physical considerations — for whose details the reader is referred to ref.[20] — lead to

assume a gravitational metric of the same type of the strong one, i.e. spatially anisotropic

and with one spatial parameter (say, b3) equal to the time one: b0(E) = b3(E) = b(E).

The energy-dependent gravitational metric has therefore the form

gDSR,grav(E) = diag
(
b2
grav(E),−b2

1,grav(E),−b2
2,grav(E),−b2

grav(E)
)
; (22)

b2
grav(E) =

⎧⎪⎨⎪⎩ 1 , 0 ≤ E ≤ E0grav

1
4
(1 + E/E0grav)

2, E0grav ≤ E
=

= 1 + Θ(E − E0,grav.)

[
1

4

(
1 +

E

E0,grav.

)2

− 1

]
, E > 0 (23)

(as already said, the coefficients b2
1,grav(E) and b2

2,grav(E) are presently undetermined at

phenomenological level), with

E0,grav = (20.2± 0.1)μeV. (24)

The gravitational metric (22),(23) is over-Minkowskian, asymptotically Minkowskian

with decreasing energy, like the strong one. Intriguingly enough, the value of the threshold

energy for the gravitational case E0grav is approximately of the same order of magnitude

of the thermal energy corresponding to the 2.7oK cosmic background radiation in the

Universe.



70 Electronic Journal of Theoretical Physics 6, No. 20 (2009) 59–192

Moreover, the comparison of the values of the threshold energies for the four funda-

mental interactions yields

E0e.m. < E0grav < E0weak < E0strong (25)

i.e. an increasing arrangement of E0 from the electromagnetic to the strong interaction.

Moreover
E0grav

Eoe.m.

= 4.49± 0.02 ;
E0strong

E0weak

= 4.57± 0.01, (26)

namely
E0grav

Eoe.m.
� E0strong

E0weak
(27)

an intriguing result indeed.

Let us finally stress that in the last decade we designed and carried out new experi-

ments, related to all four fundamental interactions, which test and confirm some of the

predictions of the DSR formalism, thus providing a possible evidence for the deformation

of space-time. Among them, let us quote the anomalous behavior of some photon systems

(at variance with respect to standard electrodynamics and quantum mechanics) [31-35];

the measurement of the speed of propagation of gravitational effects [20]; the effective-

ness of ultrasounds in speeding up the decay of radioactive elements and in triggering

nuclear reactions in liquid solutions [36-38, 20]. Moreover, such experiments point out

the need for considering the energy as a fifth coordinate, thus casting a bridge toward

the five-dimensional formalism of DR5. We refer the reader to second ref. [20] for an

in-depth discussion of this point.

3. Embedding Deformed Minkowski Space

in a Five-Dimensional Riemann Space

3.1 From LLI Breakdown to Energy as Fifth Dimension

Both the analysis of the physical processes considered in deriving the phenomenological

energy-dependent metrics for the four fundamental interactions, and the experiments [31-

37], seem to provide evidence (indirect and direct, respectively) for a breakdown of LLI

invariance (at least in its usual, special-relativistic sense). But it is well known that, in

general, the breakdown of a symmetry is the signature of the need for a wider, exact

symmetry. In the case of the breaking of a space-time symmetry — as the Lorentz one

— this is often related to the possible occurrence of higher-dimensional schemes. This is

indeed the case, and energy does in fact represent an extra dimension.

In the description of interactions by energy-dependent metrics, we saw that energy

plays in fact a dual role. Indeed, on one side, it constitutes a dynamic variable, because it

specifies the dynamical behavior of the process under consideration, and, via the metric

coefficients, it provides us with a dynamical map — in the energy range of interest — of

the interaction ruling the given process. On the other hand, it represents a parameter
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characteristic of the phenomenon considered (and therefore, for a given process, it cannot

be changed at will). In other words, when describing a given process, the deformed ge-

ometry of space-time (in the interaction region where the process is occurring) is “frozen”

at the situation described by those values of the metric coefficients
{
b2
μ(E)

}
μ=0,1,2,3

cor-

responding to the energy value of the process considered. Namely, a fixed value of E

determines the space-time structure of the interaction region at that given energy. In

this respect, therefore, the energy of the process has to be considered as a geometrical

quantity intimately related to the very geometrical structure of the physical world. In

other words, from a geometrical point of view, all goes on as if were actually working

on “slices” (sections) of a five-dimensional space, in which the extra dimension is just

represented by the energy. In other words, a fixed value of the energy determines the

space-time structure of the interaction region for the given process at that given energy. In

this respect, therefore, E is to be regarded as a geometrical quantity, intimately connected

to the very geometrical structure of the physical world itself. Then, the four-dimensional,

deformed, energy-dependent space-time is just a manifestation (or a ”shadow”, to use

the famous word of Minkowski) of a larger space with energy as fifth dimension.

The simplest way to take account of (and to make explicit) the double role of energy

in DSR is assuming that E represents an extra metric dimension — on the same footing

of space and time — and therefore embedding the 4-d deformed Minkowski space M̃(E)

of DSR in a 5-d (Riemannian) space-time-energy manifold �5. This leads to build up

a “Kaluza-Klein-like” scheme, with energy as fifth dimension, we shall refer to in the

following as Five-Dimensional Deformed Relativity (DR5) [20, 22].

3.2 The 5-dimensional Space-Time-Energy Manifold �5

On the basis of the above arguments, we assume therefore that physical phenomena

do occur in a world which is actually described by a 5-dimensional space-time-energy

manifold �5 endowed with the energy-dependent metric7:

gAB,DR5(E) ≡ diag(b2
0(E),−b2

1(E),−b2
2(E),−b2

3(E), f(E))
ESC off

=

= δAB

(
b2
0(E)δA0 − b2

1(E)δA1 − b2
2(E)δA2 − b2

3(E)δA3 + f(E)δA5

)
. (28)

It follows from Eq.(28) that E, which is an independent non-metric variable in DSR,

becomes a metric coordinate in �5. Then, whereas gμν,DSR(E) (given by Eq.(2)) is a

deformed, Minkowskian metric tensor, gAB,DR5(E) is a genuine Riemannian metric tensor.

7 In the following, capital Latin indices take values in the range {0, 1, 2, 3, 5}, with index 5 labelling
the fifth dimension. We choose to label by 5 the extra coordinate, instead of using 4, in order to avoid
confusion with the notation often adopted for the (imaginary) time coordinate in a (formally) Euclidean
Minkowski space.
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Therefore, the infinitesimal interval of �5 is given by:

ds2
DR5(E) ≡ dS2(E) ≡ gAB,DR5(E)dxAdxB =

= b2
0(E)

(
dx0

)2 − b2
1(E)

(
dx1

)2 − b2
2(E)

(
dx2

)2 − b2
3(E)

(
dx3

)2
+ f(E)

(
dx5

)2
=

= b2
0(E)c2 (dt)2 − b2

1(E)
(
dx1

)2 − b2
2(E)

(
dx2

)2 − b2
3(E)

(
dx3

)2
+ f(E)l20 (dE)2 ,

(29)

where we have put

x5 ≡ l0E , l0 > 0. (30)

Since the space-time metric coefficients are dimensionless, it can be assumed that

they are functions of the ratio E/E0, where E0 is an energy scale characteristic of the

interaction (and the process) considered (for instance, the energy threshold in the phe-

nomenological metrics of Subsect.2.2). The coefficients
{
b2
μ(E)

}
of the metric of M̃(E)

can be therefore expressed as{
bμ

(
E

E0

)}
≡
{

bμ

(
x5

x5
0

)}
=
{
bμ(x5)

}
, ∀μ = 0, 1, 2, 3 (31)

where we put

x5
0 ≡ l0E0 . (32)

As to the fifth metric coefficient, one assumes that it too is a function of the energy

only: f = f(E) ≡ f(x5) (although, in principle, nothing prevents from assuming that, in

general, f may depend also on space-time coordinates {xμ}, f = f({xμ} , x5)). Unlike the

other metric coefficients, it may be f(E) ≶ 0. Therefore, a priori, the energy dimension

may have either a timelike or a spacelike signature in �5, depending on sgn (f(E)) = ±1.

In the following, it will be sometimes convenient assuming f(E) ∈ R+
0 and explicitly

introducing the double sign in front of the fifth coefficient.

In terms of x5, the (covariant) metric tensor can be written as

gAB,DR5(x
5) = diag(b2

0(x
5),−b2

1(x
5),−b2

2(x
5),−b2

3(x
5),±f(x5)) =

ESC off
= δAB

[
b2
0(x

5)δA0 − b2
1(x

5)δA1 − b2
2(x

5)δA2 − b2
3(x

5)δA3 ± f(x5)δA5

]
.

(33)

On account of the relation

gAB
DR5(x

5)gBC,DR5(x
5) = δA

C , (34)

the contravariant metric tensor reads

gAB
DR5(x

5) = diag(b−2
0 (x5),−b−2

1 (x5),−b−2
2 (x5),−b−2

3 (x5),±
(
f(x5)

)−1
) =

ESC off
= δAB

⎡⎢⎣ b−2
0 (x5)δA0 − b−2

1 (x5)δA1 − b−2
2 (x5)δA2 − b−2

3 (x5)δA3+

± (f(x5))
−1

δA5

⎤⎥⎦ . (35)



Electronic Journal of Theoretical Physics 6, No. 20 (2009) 59–192 73

The space �5 has the following ”slicing property”

�5|dx5=0⇔x5=x5 = M̃(x5) =
{

M̃(x5)
}

x5=x5
(36)

(where x5 is a fixed value of the fifth coordinate) or, at the level of the metric tensor:

gAB,DR5(x
5)
∣∣
dx5=0⇔x5=x5∈R+

0
=

= diag
(
b2
0(x

5),−b2
1(x

5),−b2
2(x

5),−b2
3(x

5),±f(x5)
)

= gAB,DSR(x5). (37)

We recall that in general, in the framework of 5-d Kaluza-Klein (KK) theories, the

fifth dimension must be necessarily spacelike, since, in order to avoid the occurrence of

causal (loop) anomalies, the number of timelike dimensions cannot be greater than one.

But it is worth to stress that the present theory is not a Kaluza-Klein one. In ”true”

KK theories, due to the lack of observability of the extra dimensions, it is necessary

to impose to them the cylindricity condition. This is not required in the framework of

DR5, since the fifth dimension (energy) is a physically observable quantity (think to the

Minkowski space of standard SR: There is no need to hide the fourth dimension, since

time is an observable quantity). Actually, in DR5 not only the cylindricity condition is not

implemented, but it is even reversed. In fact, the metric tensor gAB,DR5(x
5) depends only

on the fifth coordinate x5. Therefore, one does not assume the compactification of the

extra coordinate (one of the main methods of implementing the cylindricity condition

in modern hyperdimensional KK theories, as discussed in Subsect.1.1), which remains

therefore extended (i.e. with infinite compactification radius). DR5 belongs therefore to

the class of noncompactified KK theories.

The problem of the possible occurrence of causal anomalies in presence of more time-

like dimensions is then left open in the ”pseudo-Kaluza-Klein” context of DR5. This is

reflected in the uncertainty in the sign of the energy metric coefficient f(x5). In partic-

ular, it cannot be excluded a priori that the signature of x5 can change. This occurs

whenever the function f(x5) does vanish for some energy values. As a consequence, in

correspondence to the energy values which are zeros of f(x5), the metric gAB,DR5(x
5) is

degenerate.

3.3 DR5 and Warped Geometry

We have seen in Subsect.1.1 that in some multidimensional spacetime theories the geom-

etry of the extra (spatial) dimension(s) is warped, in order to avoid recourse to compact-

ification.

If ζ is the extra coordinate, a typical 5-d. warped interval reads

dS2 = a(ζ)gμνdxμdxν − dζ2, (38)

where gμν is the Minkowski metric and a(ζ) the warp factor, given by

a(ζ) = e−k|ζ|. (39)
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The decay constant k > 0 is proportional to σ, the energy density (per unit three-volume)

of the brane. It is assumed of course that the brane is located at ζ = 0. As a consequence,

the metric induced on the brane is Minkowskian.

It can be shown that metric (38) is a solution of the five-dimensional Einstein equa-

tions with a cosmological constant proportional to the square of the energy density of the

brane: Λ(5) ∼ σ2.

A generalization of the above warped interval is

dS2 = a(ζ)c2dt2 − b(ζ)dx2 − dζ2;

a(0) = b(0) = 1, (40)

where the warp factors of time and 3-d. space, a(ζ) and b(ζ), are different. This metric

accounts for Lorentz-violating effects, provided the wave function of the particles spreads

in the fifth dimension (this may be the case for gravitons).

We want to remark that intervals (38), (40) are just special cases of the DR5 interval

(29). In fact either metric is, for the space-time part, a spatially isotropic one with

f(E) = −1.

Of course, the warped metrics (38), (40) and the DR5 metrics have a profound phys-

ical difference. In the former ones, ζ is an hidden space dimension: the (exponentially

decaying) warp factors are just introduced in order to make this extra dimension un-

observable. In the DR5 framework, the fifth dimension is the energy, and therefore an

observable physical quantity. This entails, among the others, that the metric coefficients

may have any functional form. Moreover — as repeatedly stressed — DSR and DR5

metrics are assumed to provide a local description of the physical processes ruled by one

of the fundamental interactions; on the contrary, warped metrics do describe the physical

world at a large, global scale.

However, the similar structure of the two types of metrics entails that the mathe-

matical study of the formal properties of the space �5 of DR5 can be of some utility for

warped geometry, too. Results obtained e.g. for DR5 isometries may hold in some cases

for the warped models (or be adapted with suitable changes). This provides a further

reason to exploring the mathematical features of DR5.

3.4 5-d. Metrics of Fundamental Interactions

3.4.1 Phenomenological Metrics

Let us now consider the 4-d. metrics of the deformed Minkowski spaces M̃(x5) for the

four fundamental interactions (electromagnetic, weak, strong and gravitational) (see Sub-

sect.2.2). In passing from the deformed, special-relativistic 4-d. framework of DSR to the

general-relativistic 5-d. one of DR5 — geometrically corresponding to the embedding of

the deformed 4-d. Minkowski spaces
{
M̃(x5)

}
x5∈R+

0

(where x5 is a parameter) in the 5-d.

Riemann space �5 (where x5 is a metric coordinate), in general the phenomenological

metrics (10)-(11), (14)-(15), (17)-(20), (22)-(23) take the following 5-d.form (f(x5) ∈ R+
0



Electronic Journal of Theoretical Physics 6, No. 20 (2009) 59–192 75

∀x5 ∈ R+
0 ):

gAB,DR5,e.m.(x
5) =

= diag

(
1,−

{
1 + Θ̂(x5

0,e.m. − x5)

[(
x5

x5
0,e.m.

)1/3

− 1

]}
,

−
{

1 + Θ̂(x5
0,e.m. − x5)

[(
x5

x5
0,e.m.

)1/3

− 1

]}
,

−
{

1 + Θ̂(x5
0,e.m. − x5)

[(
x5

x5
0,e.m.

)1/3

− 1

]}
,±f(x5)

)
; (41)

gAB,DR5,weak(x
5) =

= diag

⎛⎝1,−

⎧⎨⎩1 + Θ̂(x5
0,weak − x5)

⎡⎣( x5

x5
0,weak

)1/3

− 1

⎤⎦⎫⎬⎭ ,

−

⎧⎨⎩1 + Θ̂(x5
0,weak − x5)

⎡⎣( x5

x5
0,weak

)1/3

− 1

⎤⎦⎫⎬⎭ ,

−

⎧⎨⎩1 + Θ̂(x5
0,weak − x5)

⎡⎣( x5

x5
0,weak

)1/3

− 1

⎤⎦⎫⎬⎭ ,±f(x5)

⎞⎠ ; (42)

gAB,DR5,strong(x
5) =

= diag

⎛⎝1 + Θ̂(x5 − x5
0,strong)

[(
x5

x5
0,strong

)2

− 1

]
,−

(√
2

5

)2

,

−
(

2

5

)2

,−
{

1 + Θ̂(x5 − x5
0,strong)

[(
x5

x5
0,strong

)2

− 1

]}
,±f(x5)

)
; (43)

gAB,DR5,grav.(x
5) =

= diag

(
1 + Θ̂(x5 − x5

0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]
,−b2

1,grav.(x
5),

−b2
2,grav.(x

5),−
{

1 + Θ̂(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,±f(x5)

)
.

(44)

As we are going to show, all the above metrics — derived on a mere phenomenolog-

ical basis, from the experimental data on some physical phenomena ruled by the four

fundamental interactions, at least as far as their space-time part is concerned — can be

recovered as solutions of the vacuum Einstein equations in the five-dimensional space �5,

natural covering of the deformed Minkowski space M̃(x5).
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3.4.2 Power Ansatz

We have seen in Subsect.3.3 that the space-time metric coefficients can be considered

functions of the ratio E/E0 (see Eq.(31)). Therefore, for the metric gDR5 written in the

form (29), we can put, following also the hints from phenomenology (see Subsect.2.2):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b2
0(E) = (E/E0)

q0 ;

b2
1(E) = (E/E0)

q1 ;

b2
2(E) = (E/E0)

q2 ;

b2
3(E) = (E/E0)

q3 ;

f(E) = (E/E0)
r ,

(45)

r, qμ ∈ R ∀μ = 0, 1, 2, 3.

The corresponding 5-d. metric reads therefore

gAB,DR5power(q̃, x5) =

= diag

((
x5

x5
0

)q0

,−
(

x5

x5
0

)q1

,−
(

x5

x5
0

)q2

,−
(

x5

x5
0

)q3

,±
(

x5

x5
0

)r)
(46)

(q0, q1, q2, q3, r ∈ Q, A, B = 0, 1, 2, 3, 5), in which the double sign of the energy coefficient

has been made clear and the (fake) 5-vector q̃ ≡ (q0, q1, q2, q3, r) introduced8. In the

following we shall refer to the form (45) as the”Power Ansatz”.

We have seen in 3.5.1 that embedding the DSR phenomenological metrics for the four

interactions in �5 leads to expressions (41)-(44). In the context of the Power Ansatz, and

8 In the following, we shall use the tilded-bold notation ṽ for a (true or fake) vector in �5, in order to
distinguish it from a vector v in the usual 3-d.space.



Electronic Journal of Theoretical Physics 6, No. 20 (2009) 59–192 77

by making their piecewise structure explicit, they can be written in the form

gAB,DR5,e.m.,weak(x
5) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag

⎛⎜⎜⎜⎜⎜⎝
1,−

(
x5

x5
0,e.m.,weak

)1/3

,−
(

x5

x5
0,e.m.,weak

)1/3

,

−
(

x5

x5
0,e.m.,weak

)1/3

,±
(

x5

x5
0,e.m.,weak

)r

⎞⎟⎟⎟⎟⎟⎠ ,

0 < x5 < x5
0,e.m.,weak;

diag

(
1,−1,−1,−1,±

(
x5

x5
0,e.m.,weak

)r)
,

x5 ≥ x5
0,e.m.,weak;

(47)

gAB,DR5,strong(x
5) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag

⎛⎜⎜⎜⎜⎝
(

x5

x5
0,strong

)2

,−
(√

2

5

)2

,−
(

2

5

)2

,

−
(

x5

x5
0,strong

)2

,±
(

x5

x5
0,strong

)r

⎞⎟⎟⎟⎟⎠ ,

x5 > x5
0,strong;

diag

⎛⎝1,−
(√

2

5

)2

,−
(

2

5

)2

,−1,±
(

x5

x5
0,strong

)r
⎞⎠ ,

0 < x5 ≤ x5
0,strong;

(48)
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gAB,DR5,grav.(x
5) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag

⎛⎜⎜⎜⎝
1

4

(
1 +

x5

x5
0,grav.

)2

,−b2
1,grav.(x

5),−b2
2,grav.(x

5),

1

4

(
1 +

x5

x5
0,grav.

)2

,±
(

x5

x5
0,grav.

)r

⎞⎟⎟⎟⎠ ,

x5 > x5
0,grav.;

diag

(
1,−b2

1,grav.(x
5),−b2

2,grav.(x
5),−1,±

(
x5

x5
0,grav.

)r)
,

0 < x5 ≤ x5
0,grav..

(49)

In the gravitational metric gAB,DR5,grav.(x
5) the expressions of the two space coefficients

b2
1,grav.(x

5) and b2
2,grav.(x

5) have not been made explicit, due to their indeterminacy at

experimental level.

The phenomenological 5-d. metrics in the Power Ansatz are therefore characterized

by the parameter sets

q̃e.m./weak =

⎧⎪⎨⎪⎩
(
0, 1

3
, 1

3
, 1

3
, r
)
, 0 < x5 < x5

0,e.m./weak;

(0, 0, 0, 0, r) , x5 ≥ x5
0,e.m./weak;

; (50)

q̃strong =

⎧⎪⎨⎪⎩
(2, (0, 0) , 2, r) , x5 > x5

0,strong;

(0, (0, 0) , 0, r) , 0 < x5 ≤ x5
0,strong;

; (51)

q̃grav. =

⎧⎪⎨⎪⎩
(2, ?, ?, 2, r) , x5 > x5

0,grav.;

(0, ?, ?, 0, r) , 0 < x5 ≤ x5
0,grav.

, (52)

where the question marks ”?” reflect the unknown nature of the two gravitational spatial

coefficients.

Let us clarify the notation adopted for q̃strong and q̃grav.. The zeros in brackets in

q̃strong reflect the fact that such exponents do not refer to the metric tensor gAB,DR5power(x
5)

(Eq.(45)), but to the more general tensor

gAB,DR5power−conform(x5) =

= diag

(
ϑ0

(
x5

x5
0

)q0

,−ϑ1

(
x5

x5
0

)q1

,−ϑ2

(
x5

x5
0

)q2

,−ϑ3

(
x5

x5
0

)q3

,±ϑ5

(
x5

x5
0

)r)
,

(53)

with ϑ̃= (ϑA) being a constant 5-vector. Eq.(52) can be written in matrix form as

gDR5power−conform(x5) = gDR5power(x
5)ϑ̃ (54)
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where ϑ̃ is meant to be a column vector. The passage from the metric tensor gAB,DR5power(x
5)

to gAB,DR5power−conform(x5) is obtained by means of the tensor transformation law in �5

(ESC on)

gAB,DR5power−conform(x5) =
∂xK

∂x′A
∂xL

∂x′B
gKL,DR5power(x

5) (55)

induced by the following 5-d. anisotropic rescaling of the coordinates of �5:

dxA =
√

ϑAdx′A ↔ xA =
√

ϑAx′A. (56)

Such a transformation allows one to get, in the Power Ansatz, metric coefficients constant

(i.e. independent of the energy) but different. This is just the case of the two constant

space coefficients b2
1(x

5), b2
2(x

5) in the strong metric. In this case, the vector ϑ explicitly

reads

ϑ̃strong =

⎛⎝0,

(√
2

5

)2

,

(
2

5

)2

, 0, ?

⎞⎠ , (57)

where the question mark ”?” reflects again the unknown nature of ±f(x5).

The underlined 2, 2, in q̃grav. are due to the fact that actually the functional form

of the related metric coefficients is not

(
x5

x5
0,grav.

)2

but
1

4

(
1 +

x5

x5
0,grav.

)2

. Again, it is

possible to recover the phenomenological 5-d. metric gAB,DR5,grav.(x
5) from the Power

Ansatz form gAB,DR5power(x
5) by a rescaling and a translation of the energy. In fact, one

has

x5 −→ x5′ = x5 − x5
0 ⇔ dx5′ = dx5. (58)

Such a translation in energy is allowed because we are just working in the framework of

DR5. Therefore

b2
0(x

5) = b2
0(x

5′ + x5
0) = b2

0,new

(
x5′) =

(
x5′ + x5

0

x5
0

)2

=

(
x5′

x5
0

+
x5

0

x5
0

)2

. (59)

By rescaling the threshold energy (in a physically consistent way, because it amounts to

a redefinition of the scale of measure of energy)

x5
0 −→ x5′

0 = x5
0

(
x̃5

0

x5
0

)
, (60)

one gets

b2
0,new

(
x5′) =

(
x5′

x5′
0

x̃5
0

x5
0

+
x̃5

0

x5′
0

)2

=

(
x̃5

0

x5′
0

)2 (
1 +

x5′

x5
0

)2

. (61)

This metric time coefficient is of the gravitational type, except for the factor

(
x̃5

0

x5′
0

)2

,

which however can be got rid of by the following rescaling of the time coordinate:

x0 −→ x′0 =
x̃5

0

x5′
0

x0. (62)
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This is a conformal transformation corresponding to a redefinition of the scale of measure

of time. Notice that the above rescaling procedure of energy and time does not account for

the factor 1/4 in front of

(
1 +

x5

x5
0,grav.

)2

. This can be dealt with by the method followed

for q̃strong, namely by considering the generalized metric gAB,DR5power−conform(x5) , where

now the vector ϑ̃ is given by ϑ̃=
(

1
4
, ?, ?, 1

4
, ?
)

(as before, the question marks reflect the

unknown nature of the related metric coefficients).

Notice that both in Eqs.(46)-(48) and in Eqs.(49)-(51) it was assumed that

qμ.int.(x
5
0,int.) = 0, μ = 0, 1, 2, 3 , int. = e.m., weak, strong, grav., (63)

for simplicity reasons, since — as already stressed in Subsect.2.2 — nothing can be said

on the behavior of the metrics at the energy thresholds.

Let us introduce the left and right specifications Θ̂L (x), Θ̂R (x) of the Heaviside theta

function, defined respectively by

Θ̂L (x) ≡

⎧⎪⎨⎪⎩ 1, x > 0

0, x ≤ 0
, (64)

Θ̂R (x) ≡

⎧⎪⎨⎪⎩ 1, x ≥ 0

0, x < 0
, (65)

and satisfying the complementarity relation

1− Θ̂R (x) = Θ̂L (x) . (66)

Then, the exponent sets (49)-(51) can be written in compact form as

q̃e.m./weak =

(
0,

1

3
Θ̂L

(
x5

0,e.m./weak − x5
)
,

1

3
Θ̂L

(
x5

0,e.m./weak − x5
)
,
1

3
Θ̂L

(
x5

0,e.m./weak − x5
)
, r

)
, (67)

q̃strong =
(
2Θ̂L

(
x5 − x5

0,strong

)
, (0, 0) , 2Θ̂L

(
x5 − x5

0,strong

)
, r
)

, (68)

q̃grav. =
(
2Θ̂L

(
x5 − x5

0,grav.

)
, ?, ?, 2Θ̂L

(
x5 − x5

0,grav.

)
, r
)

, (69)

where the underlining and the question marks have the same meaning as above.

3.5 Einstein’s Field Equations in �5 and Their Solutions

3.5.1 Riemannian Structure of �5

We have seen that, unlike M̃(x5), which is a flat pseudoeuclidean space, �5 is a genuine

Riemann one. Its affine structure is determined by the five-dimensional affine connection
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ΓA
BC(x5) (which rules the parallel transport of vectors in �5), defined by

ΓA
BC(x5) ≡ ∂xA

∂ξD

∂2ξD

∂xB∂xC
, (70)

where
{
ξA
}
,
{
xA
}

are the coordinates in a locally inertial (Lorentzian) frame and in a

generic frame, respectively. Let us recall that ΓA
BC is not a true tensor, since it vanishes

in a locally inertial frame (namely, in absence of a gravitational field).

Due to the compatibility between affine geometry and metric geometry in Riemann

spaces (characterized by the vanishing of the covariant derivative of the metric, and

therefore torsion-free), it is possible to express the connection components in terms of

the metric tensor as

ΓI
AB(x5) =

1

2
gIK

DR5(∂BgKA,DR5 + ∂AgKB,DR5 − ∂KgAB,DR5) =

⎧⎪⎨⎪⎩ I

AB

⎫⎪⎬⎪⎭ , (71)

where the quantities

⎧⎪⎨⎪⎩ I

AB

⎫⎪⎬⎪⎭ are the second-kind Christoffel symbols.

The Riemann-Christoffel (curvature) tensor in �5 is given by

RA
BCD(x5) = ∂CΓA

BD − ∂DΓA
BC + ΓA

KCΓK
BD − ΓA

KDΓK
BC . (72)

By contraction of RA
BCD on two and four indices, respectively, we get as usual the

five-dimensional Ricci tensor RAB(x5), given explicitly by

RAB(x5) = ∂IΓ
I
AB − ∂BΓI

AI + ΓI
ABΓK

IK − ΓK
AIΓ

I
BK , (73)

and the scalar curvature R(x5) = RA
A(x5).

The explicit expressions of ΓA
BC(x5), RABCD(x5), RAB(x5) and R(x5) are given in App.

A9.

From the knowledge of the Riemann-Christoffel tensor and of its contractions it is

possible to derive the Einstein equations in the space �5 by exploiting the Hamilton

principle. The five-dimensional Hilbert-Einstein action in �5 reads

SDR5 = − 1

16πG̃

∫
d5x

√
±g̃(x5)R(x5)− Λ(5)

∫
d5x

√
±g̃(x5), (74)

where g̃(x5) = det gDR5(x
5), G̃ is the five-dimensional ”gravitational” constant, and Λ(5)

is the ”cosmological” constant in �5. The form of the second term of the action (73)

clearly shows that Λ(5) is assumed to be a genuine constant, although it might also, in

principle, depend on both the fifth coordinate (namely, on the energy E) and the space-

time coordinates x: Λ(5) = Λ(5)(x, x5). The double sign in the square root accords to that

9 Henceforth, in order to simplify the notation, we adopt units such that c =(velocity of light)= 1 and
�0 = 1.
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in front of the fifth metric coefficient f(x5). Among the problems concerning SDR5, let us

quote its physical meaning (as well as that of G̃) and the meaning of those energy values

x5 such that SDR5(x5) = 0 (due to a possible degeneracy of the metric).

Then, a straightforward use of the variational methods yields the (vacuum) Einstein

equations in �5 in the form

RAB(x5)− 1

2
gAB,DR5(x

5)R(x5) = Λ(5)gAB,DR5(x
5). (75)

In the following, we shall confine ourselves to the case Λ(5) = 0. Notice that assuming a

vanishing cosmological constant has the physical motivation (at least as far as gravitation

is concerned and one is not interested into quantum effects) that Λ(5) is related to the

vacuum energy; experimental evidence shows that, at least in our four-dimensional space,

Λ � 3 · 10−52m−2.

3.5.2 Solving Vacuum Einstein’s Equations in the Power Ansatz

Solving Einstein’s equations in the five-dimensional, deformed space �5 in the general

case is quite an impossible task. However, solutions of Eqs.(74) with Λ(5) = 0 can be

obtained in some cases of special physical relevance, namely for a spatially isotropic

deformed metric (b1(E) = b2(E) = b3(E) = b(E)) and in the Power Ansatz discussed in

Subsect.3.5.2.

Let us consider this last case, which is of special interest to our present aims, namely

a metric of the type (45). In order to simplify the solution of the Einstein equations, we

assume here simply, for the dimensional coefficient f(E):

f(E) = Er (76)

(r ∈ R), being understood that the characteristic parameter E0 is possibly contained

in �0. Of course, the Einstein equations (74) reduce now (for Λ(5) = 0) to the following

algebraic equations in the five exponents q0, q1, q2, q3, r:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2 + r)(q3 + q1 + q2)− q2
1 − q2

2 − q2
3 − q1q2 − q1q3 − q2q3 = 0 ;

(2 + r)(q3 + q0 + q2)− q2
2 − q2

3 − q2
0 − q2q3 − q2q0 − q3q0 = 0;

(2 + r)(q3 + q0 + q1)− q2
1 − q2

3 − q2
0 − q1q3 − q1q0 − q3q0 = 0;

(2 + r)(q0 + q1 + q2)− q2
1 − q2

2 − q2
0 − q1q2 − q1q0 − q2q0 = 0;

q1q2 + q1q3 + q1q0 + q2q3 + q2q0 + q3q0 = 0.

(77)

It can be shown [20] that Eqs.(76) admit twelve possible classes of solutions, which

can be classified according to the values of the five-dimensional set q̃≡(q0, q1, q2, q3, r).

Explicitly one has:
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- Class (I): q̃I =

(
q2,−q2

(
2q3 + q2

2q2 + q3

)
, q2, q3,

q2
3 − 2q3 + 2q2q3 − 4q2 + 3q2

2

2q2 + q3

)
;

- Class (II): q̃II = (0, q1, 0, 0, q1 − 2) ;

- Class (III): q̃III = (q2,−q2, q2, q2,−2(1− q2)) ;

- Class (IV): q̃IV = (0, 0, 0, q3, q3 − 2) ;

- Class (V): q̃V = (−q3,−q3,−q3, q3,−(1 + q3)) ;

- Class (VI): q̃V I = (q0, 0, 0, 0, q0 − 2) ;

- Class (VII): q̃V II = (q0,−q0,−q0,−q0,−2− q0) ;

- Class (VIII): q̃V III = (0, 0, 0, 0, r) ;

- Class (IX): q̃IX = (0, 0, q2, 0,−2 + q2) ;

- Class (X): q̃X =

(
q0,−

q3q0 + q2q3 + q2q0

q2 + q3 + q0

, q2, q3, rX

)
, with

rX =
q2
3 + q3q0 − 2q3 + q2q3 − 2q2 + q2q0 + q2

2 − 2q0 + q2
0

q2 + q3 + q0
;

- Class (XI): q̃XI =

(
q0,−

q2(2q0 + q2)

2q2 + q0
, q2, q2,

3q2
2 − 4q2 + 2q2q0 − 2q0 + q2

0

2q2 + q0

)
;

- Class (XII): q̃XII =

(
q0, q2, q2,−

q2(2q0 + q2)

2q2 + q0

, rXII

)
, with

rXII =
q2
3 + q3q0 − 2q3 + q2q3 − 2q2 + q2q0 + q2

2 − 2q0 + q2
0

q2 + q3 + q0
.

3.5.3 Discussion of Solutions

The twelve classes of solutions found in the Power Ansatz allow one to recover, as special

cases, all the phenomenological metrics discussed in Subsect.3.5.1. Let us write explicitly

the interval in �5 in such a case:

dS2 =

(
E

E0

)q0

dt2 −
(

E

E0

)q1

dx2 −
(

E

E0

)q2

dy2 −
(

E

E0

)q3

dz2 + ErdE2. (78)

Then, it is easily seen that the Minkowski metric is recovered from all classes of

solutions. Solution (VIII) corresponds directly to a Minkowskian space-time, with the

exponent r of the fifth coefficient undetermined. In the other cases, we have to put:

q1 = 0 for class (II); q2 = 0 for classes (III) and (IX); q3 = 0 for (IV) and (V); q0 = 0

for (VI) and (VII) (for all the previous solutions, it is r = −2); q2 = q3 = 0 for class (I);

q2 = q3 = q0 = 0 for class (X); q2 = q0 = 0 for class (XI); q2 = q0 = 0 for class (XII).

The latter four solutions have r = 0 , and therefore correspond to a five-dimensional

Minkowskian flat space.

If we set q1 = 1/3 in class (II), q3 = 1/3 in class (IV), or q2 = 1/3 in class (IX)

(corresponding in all three cases to the value r = 5/3 for the exponent of the fifth
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metric coefficient), we get a metric of the ”electroweak type” (see Eqs.(19.12),(19.13)), i.e.

with unit time coefficient and one space coefficient behaving as (E/E0)
1/3, but spatially

anisotropic, since two of the space metric coefficients are constant and Minkowskian

(precisely, the y, z coefficients for class (II); the x, y coefficients for class (IV); and the

x, z ones for class (IX)). Notice that such an anisotropy does not disagree with the

phenomenological results; indeed, in the analysis of the experimental data one was forced

to assume spatial isotropy in the electromagnetic and in the weak cases, simply because

of the lack of experimental information on two of the space dimensions.

Putting q0 = 1 in class (VI), we find a metric which is spatially Minkowskian, with a

time coefficient linear in E, i.e. a (gravitational) metric of the Einstein type (4).

Class (I) allows one to get as a special case a metric of the strong type (see Eqs.(17)-

(20)). This is achieved by setting q2 = 2, whence q1 = −4(q3 + 1)/(q3 + 4); r = (q2
3 +

2q3 + 4)/(q3 + 4). Moreover, for q3 = 0, it is q1 = −1; r = 1. In other words, one finds a

solution corresponding to b0(E) = b(E) = (E/E0) and spatially anisotropic, i.e. a metric

of the type (44).

Finally, the three classes (X)-(XII) admit as special case the gravitational metric (45),

which is recovered by putting q0 = 2 and q1 = q2 = q3 = 0 (whence also r = 0) and by a

rescaling and a translation of the energy (see Subsect.3.5.2).

In conclusion, we can state that the formalism of DR5 permits to recover, as solutions

of the vacuum Einstein equations, all the phenomenological energy-dependent metrics of

the electromagnetic, weak, strong and gravitational type (and also the gravitational one

of the Einstein kind, Eq.(4)).

4. Killing Equations in the Space �5

In the present and in the following Sections, we shall deal with the problem of the isome-

tries of the space �5 of DR5. This will allow us to determine the symmetry properties

of DR5, by getting also preliminary informations on the infinitesimal structure of the

related algebras.

4.1 General Case

Let us discuss the Killing symmetries of the space �5 [20].

In �5, the Lie derivative L of a rank-2 covariant tensor field TAB along the 5-vector

field ξ̃ =
{
ξA(x, x5) ≡ ξA(xB)

}
is given as usual by

L̃
ξ
TAB = TC

AξC;B + TC
BξC;A + TAB;CξC , (79)

with ”;A” denoting covariant derivative with respect to xA. If the tensor coincides with

the metric tensor gAB (whose covariant derivative vanishes), its Lie derivative becomes

L̃
ξ
gAB = ξA;B + ξB;A = ξ[A;B], (80)
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where the bracket [·; ·] means symmetrization with respect to the enclosed indices.

Then, a 5-vector ξ̃ is a Killing vector if the Lie derivative of the metric tensor with

respect to ξ̃ vanishes, i.e.

L̃
ξ
gAB = 0⇔ ξ[A;B] = 0⇔ ξA;B + ξB;A = 0 (81)

are the Killing equations in �5. Since the Lie derivative is nothing but the generalization

of directional derivative, this means that the Killing vectors correspond to isometric

directions. The integrability conditions of Eqs.(80) are given by

ξA;BC = ξC;[BA] = RD
CBAξD ⇔ L̃

ξ
ΓA

BC = 0, (82)

where RABCD and ΓA
BC are the 5-d Riemann-Christoffel tensor and affine connection (71),

(70), respectively. In turn, Eqs.(81) are integrable under the conditions

L̃
ξ
RABCD = 0. (83)

For metric (33), from the Christoffel symbols ΓA
BC of the metric gAB,DR5(x

5), Eqs.(80)

take the form of the following system of 15 coupled, partial derivative differential equa-

tions in �5 for the Killing vector ξA(xB):

f(x5)ξ0,0(x
A)± b0(x

5)b′0(x
5)ξ5(x

A) = 0; (84)

ξ0,1(x
A) + ξ1,0(x

A) = 0

ξ0,2(x
A) + ξ2,0(x

A) = 0

ξ0,3(x
A) + ξ3,0(x

A) = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ type I conditions ; (85)

b0(x
5)(ξ0,5(x

A) + ξ5,0(x
A))− 2b′0(x

5)ξ0(x
A) = 0

}
type II condition; (86)

f(x5)ξ1,1(x
A)∓ b1(x

5)b′1(x
5)ξ5(x

A) = 0 ; (87)

ξ1,2(x
A) + ξ2,1(x

A) = 0

ξ1,3(x
A) + ξ3,1(x

A) = 0

⎫⎪⎬⎪⎭ type I conditions; (88)

b1(x
5)(ξ1,5(x

A) + ξ5,1(x
A))− 2b′1(x

5)ξ1(x
A) = 0

}
type II condition; (89)

f(x5)ξ2,2(x
A)∓ b2(x

5)b′2(x
5)ξ5(x

A) = 0 ; (90)

ξ2,3(x
A) + ξ3,2(x

A) = 0

}
type I condition; (91)

b2(x
5)(ξ2,5(x

A) + ξ5,2(x
A))− 2b′2(x

5)ξ2(x
A) = 0

}
type II condition; (92)
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f(x5)ξ3,3(x
A)∓ b3(x

5)b′3(x
5)ξ5(x

A) = 0 ; (93)

b3(x
5)(ξ3,5(x

A) + ξ5,3(x
A))− 2b′3(x

5)ξ3(x
A) = 0

}
type II condition; (94)

2f(x5)ξ5,5(x
A)− f ′(x5)ξ5(x

A) = 0, (95)

where now ”, A” denotes ordinary derivative with respect to xA.

Equations (83)-(94) can be divided in ”fundamental” equations and ”constraint” equa-

tions (of type I and II). The above system is in general overdetermined, i.e. its solutions

will contain numerical coefficients satisfying a given algebraic system. Explicitly solving

it yields

ξμ(xA) = Fμ(xA �=μ)+

±(−δμ0 + δμ1 + δμ2 + δμ3)bμ(x5)b′μ(x5)(f(x5))−1/2

∫
dxμF5(x); (96)

ξ5(x
A) = (f(x5))1/2F5(x). (97)

The five unknown functions FA(xB �=A) are restricted by the two following types of condi-

tions:

I) Type I (Cardinality 4, μ �= ν �= ρ �= σ):

±Aμ(x5)G,νρσ (x) + Bμ(x5)G,μμνρσ (x)+

+bμ(x5)Fμ,5(x
A �=μ)− 2b′μ(x5)Fμ(xA �=μ) = 0 (98)

II) Type II (Cardinality 6, symm. in μ, ν, μ �= ν �= ρ �= σ):

Fμ,ν(x
A �=μ) + Fν,μ(xA �=ν)+

±(−δμ0 + δμ1 + δμ2 + δμ3)bμ(x5)b′μ(x5)(f(x5))−1/2G,ννρσ (x)+

±(−δν0 + δν1 + δν2 + δν3)bν(x
5)b′ν(x

5)(f(x5))−1/2G,μμρσ (x) = 0 (99)

where we introduced the fake 4-vectors 10 (ESC off)

Aμ(x5) ≡ (−δμ0 + δμ1 + δμ2 + δμ3)bμ(x5)(f(x5))−1/2·

·
[
−
(
b′μ(x5)

)2
+ bμ(x5)b′′μ(x5)− 1

2
bμ(x5)b′μ(x5)f ′(x5)(f(x5))−1

]
; (100)

Bμ(x
5) ≡ bμ(x5)(f(x5))1/2; (101)

and defined the function

G(x) ≡
∫

d4xF5(x). (102)

10 Indeed, it is in general (ESC off) (i = 1, 2, 3)

bμ(x5) = gμμ,DR5(x5) (δμ0 − δμi) ;

fμ(x5) = ±g55,DR5(x5),

which clearly show the non-vector nature of Aμ(x5) and Bμ(x5) in the 4-d. subspaces of �5 .
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4.2 The Hypothesis Υ of Functional Independence

In order to get the explicit forms of the functions FA(xB �=A) (and therefore of the Killing

vector (95), (96)), it is necessary to analyze conditions I and make suitable simplifying

hypotheses.

To this aim, consider the following equation in the (suitably regular) functions α1(x
5),

α2(x
5) and β1(x

μ), β2(x
μ):

α1(x
5)β1(x

μ) + α2(x
5)β2(x

μ) = 0. (103)

If α1(x
5) �= 0, α2(x

5) �= 0, the solutions of Eq.(102) are given by the following two cases:

1) ∃γ ∈ R0 : α1(x
5) = γα2(x

5) (∀x5 ∈ R0) (functional linear dependence between

α1(x
5) and α2(x

5)). Then β2(x
μ) = −γβ1(x

μ) (∀xμ ∈ R, μ = 0, 1, 2, 3).

2) �γ ∈ R0 : α1(x
5) = γα2(x

5) (∀x5 ∈ R0) (functional linear independence between

α1(x
5) and α2(x

5)). Then β2(x
μ) = 0 = β1(x

μ) (∀xμ ∈ R, μ = 0, 1, 2, 3).

Let us now consider type I conditions for μ = 0. By taking their derivative with

respect to x0 one gets:

∂0

(
I)|μ=0

)
:

±A0(x
5)G,0123 (x) + B0(x

5)G,000123 (x) = 0⇔
⇔ ±A0(x

5)F5(x) + B0(x
5)F5,00(x) = 0. (104)

If A0(x
5) �= 0 and B0(x

5) �= 0, we have the following two possibilities:

1) ∃c0 ∈ R0 : ±A0(x
5) = c0B0(x

5) (∀x5 ∈ R+
0 ). From (103) one gets (∀x0, x1, x2, x3 ∈

R):

G,000123 (x) = ∓c0G,0123 (x)⇔ F5,00(x) = ∓c0F5(x); (105)

2)�c0 ∈ R0 : ±A0(x
5) = c0B0(x

5) (∀x5 ∈ R+
0 ). It follows from (103) (∀x0, x1, x2, x3 ∈

R):

G,000123 (x) = 0 = G,0123 (x)⇔ F5,00(x) = 0 = F5(x). (106)

In general, let us take the derivative with respect to xμ of type I conditions (ESC off):

∂μI) :

±Aμ(x5)G,μνρσ (x) + Bμ(x
5)G,μμμνρσ (x) = 0⇔

⇔ ±Aμ(x5)F5(x) + Bμ(x5)F5,μμ(x) = 0. (107)

If G(x) satisfies the Schwarz lemma at any order, since μ �= ν �= ρ �= σ, one gets

G,μνρσ (x) = G,0123 (x)(= F5(x)), (108)
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namely the function F5(x) is present in ∂μI) ∀μ = 0, 1, 2, 3. It is therefore sufficient to

assume that there exists at least a special index

μ ∈ {0, 1, 2, 3} :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�cμ ∈ R0 : ±Aμ(x5) = cμBμ(x5)(∀x5 ∈ R+

0 )

Aμ(x5) �= 0, Bμ(x5) �= 0

(109)

in order that (∀x0, x1, x2, x3 ∈ R)

(F5(x) =)G,0123 (x) = 0 = G,μμμ123 (x)(= F5,μμ(x))
⇒

(in gen.)
�

⇒
(in gen.)

�
G,μμμ123 (x)(= F5,μμ(x)) = 0, ∀μ = 0, 1, 2, 3. (110)

In the following the existence hypothesis

∃ (at least one) μ ∈ {0, 1, 2, 3} :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�cμ ∈ R0 : ±Aμ(x5) = cμBμ(x

5)(∀x5 ∈ R+
0 )

Aμ(x5) �= 0, Bμ(x5) �= 0

(111)

will be called ”Υ hypothesis” of functional independence.

The above reasoning can be therefore summarized as

Hp.Υ :

∃ (at least one) μ ∈ {0, 1, 2, 3} :⎧⎪⎨⎪⎩�cμ ∈ R0 : ±Aμ(x5) = cμBμ(x
5)(∀x5 ∈ R+

0 );

Aμ(x
5) �= 0, Bμ(x5) �= 0,︸ ︷︷ ︸
⇓

(F5(x) =)G,0123 (x) = 0, ∀x0, x1, x2, x3 ∈ R,︸ ︷︷ ︸
⇓

(F5,μμ(x) =)G,μμμ123 (x) = 0, ∀x0, x1, x2, x3 ∈ R, ∀μ = 0, 1, 2, 3. (112)



Electronic Journal of Theoretical Physics 6, No. 20 (2009) 59–192 89

4.3 Solving Killing equations in �5 in the Υ-Hypothesis

Then, by assuming the hypothesis Υ of functional independence to hold, and replacing

Eq.(110) in (95) and (96), one gets for the covariant Killing 5-vector ξA(x, x5):

ξμ(x
A) = Fμ(xA �=μ), ∀μ = 0, 1, 2, 3,

ξ5(x
A) = 0

⎫⎪⎬⎪⎭⇒ ξA(xB) =
(
Fμ(x

A �=μ), 0
)
. (113)

The conditions to be satisfied now by the 4 unknown functions Fμ(xA �=μ) (∀μ, ν =

0, 1, 2, 3) are obtained by substituting Eq.(110) in Eqs.(97) and (98) and read

I) Type I (Cardinality 4):

bμ(x5)Fμ,5(x
A �=μ)− 2b′μ(x5)Fμ(xA �=μ) = 0; (114)

II) Type II (Cardinality 6, symmetry in μ, ν, μ �= ν):

Fμ,ν(x
A �=μ) + Fν,μ(xA �=ν) = 0.

Solving the equations of type I yields

Fμ(xA �=μ) = b2
μ(x5)F̃μ(x

ν �=μ), ∀μ = 0, 1, 2, 3 (115)

and eventually (∀μ, ν = 0, 1, 2, 3, μ �= ν)

Fμ,ν(x
A �=μ) + Fν,μ(xA �=ν) = 0

Fμ(xA �=μ) = b2
μ(x5)F̃μ(xν �=μ)

⎫⎪⎬⎪⎭ ⇒
(in gen.)⇐

⇒
(in gen.)⇐

{
b2
μ(x5)

∂F̃μ(xρ�=μ)

∂xν
+ b2

ν(x
5)

∂F̃ν(x
ρ�=ν)

∂xμ
= 0. (116)

Summarizing, we can state that, in the hypothesis Υ of functional independence, the

covariant Killing 5-vector ξA(x, x5) has the form (ESC off)

ξA(xB) =
(
b2
μ(x5)F̃μ(xν �=μ), 0

)
(117)

where the 4 unknown real functions of 3 real variables
{

F̃μ(x
ρ�=μ)

}
are solutions of the

following system of 6 (due to the symmetry in μ and ν) non-linear, partial derivative

equations

b2
μ(x5)

∂F̃μ(xρ�=μ)

∂xν
+ b2

ν(x
5)

∂F̃ν(x
ρ�=ν)

∂xμ
= 0, μ, ν = 0, 1, 2, 3, μ �= ν, (118)

which is in general overdetermined, i.e. its explicit solutions will depend on numerical

coefficients obeying a given system.
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Solving system (117) is quite easy (although cumbersome: for details, see ref.[39]).

The final solution yields the following expressions for the components of the contravariant

Killing 5-vector ξA(x, x5) satisfying the 15 Killing equations (83)-(94) in the hypothesis

Υ of functional independence (110):

ξ0(x1, x2, x3) = F̃0(x
1, x2, x3) =

= d8x
1x2x3 + d7x

1x2 + d6x
1x3 + d4x

2x3+

+(d5 + a2)x
1 + d3x

2 + d2x
3 + (a1 + d1 + K0); (119)

ξ1(x0, x2, x3) = −F̃1(x
0, x2, x3) =

= −h2x
0x2x3 − h1x

0x2 − h8x
0x3 − h4x

2x3−

− (h7 + e2) x0 − h3x
2 − h6x

3 − (K1 + h5 + e1) ; (120)

ξ2(x0, x1, x3) = −F̃2(x
0, x1, x3) =

= −l2x
0x1x3 − l1x

0x1 − l6x
0x3 − l4x

1x3−

− (l5 + e4)x0 − l3x
1 − l8x

3 − (l7 + K2 + e3); (121)

ξ3(x0, x1, x2) = −F̃3(x
0, x1, x2) =

= −m8x
0x1x2 −m7x

0x1 −m6x
0x2 −m4x

1x2−

− (m5 + g2)x0 −m3x
1 −m2x

2 − (m1 + g1 + c); (122)

ξ5 = 0 �= ξ5(x, x5). (123)

where (some of) the real parameters di , hi, li , mi (i = 1, 2, ..., 8), ek (k = 1, 2, 3, 4), gl,

al (l = 1, 2) satisfy the following algebraic system of 6 constraints:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(01)

⎧⎪⎨⎪⎩ b2
0(x

5) [d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)]+

+b2
1(x

5) [h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)] = 0;

(02)

⎧⎪⎨⎪⎩ b2
0(x

5) (d8x
1x3 + d7x

1 + d4x
3 + d3) +

+b2
2(x

5) [l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)] = 0;

(03)

⎧⎪⎨⎪⎩ b2
0(x

5) (d8x
1x2 + d6x

1 + d4x
2 + d2)+

+b2
3(x

5) [m8x
1x2 + m7x

1 + m6x
2 + (m5 + g2)] = 0;

(12)

⎧⎪⎨⎪⎩ b2
1(x

5) (h2x
0x3 + h1x

0 + h4x
3 + h3)+

+b2
2(x

5) (l2x
0x3 + l1x

0 + l4x
3 + l3) = 0;

(13)

⎧⎪⎨⎪⎩ b2
1(x

5) (h2x
0x2 + h8x

0 + h4x
2 + h6) +

+b2
3(x

5) (m8x
0x2 + m7x

0 + m4x
2 + m3) = 0;

(23)

⎧⎪⎨⎪⎩ b2
2(x

5) (l2x
0x1 + l6x

0 + l4x
1 + l8) +

+b2
3(x

5) (m8x
0x1 + m6x

0 + m4x
1 + m2) = 0.

(124)

4.4 Power Ansatz

and Reductivity of the Hypothesis Υ

We want now to investigate if and when the simplifying Υ hypothesis (110) — we ex-

ploited in order to solve the Killing equations in �5 — is reductive. To this aim, one

needs to consider explicit forms of the 5-d. Riemannian metric gAB,DR5(x
5). As it was

seen in Subsect. 3.6, the ”Power Ansatz” allows one to recover all the phenomenological

metrics derived for the four fundamental interactions. So it is worth considering such a

case, corresponding to a 5-d. metric of the form (45), with q̃≡(q0, q1, q2, q3, r) = (qμ, r).

In the Power Ansatz, the (fake) 4-vectors Aμ(x5) and Bμ(x5) (Eqs.(99), (100)) take
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the following explicit forms

Aμ,power(x
5) =

1

(x5
0)

2 (δμ0 − δμ1 − δμ2 − δμ3)
qμ

2

(
1 +

r

2

)(x5

x5
0

) 3
2
qμ− 1

2
r−2

=

= Aμ,power(q̃; x5); (125)

Bμ,power(x
5) =

(
x5

x5
0

) 1
2
qμ+ 1

2
r

= Bμ,power(q̃;x5). (126)

Therefore

±Aμ,power(q̃; x5)

Bμ,power(q̃;x5)
= ± 1

(x5
0)

2 (δμ0 − δμ1 − δμ2 − δμ3)
qμ

2

(
1 +

r

2

)(x5

x5
0

)qμ−r−2

. (127)

Since x5 ∈ R+
0 , one gets respectively

Aμ,power(q̃; x5) �= 0⇔ qμ

2

(
1 +

r

2

)
�= 0⇔

⇔

⎧⎪⎨⎪⎩ qμ �= 0

1 + r
2
�= 0⇔ 2 + r �= 0

; (128)

Bμ,power(q̃;x5) �= 0, ∀qμ, r ∈ Q. (129)

Then
±Aμ,power(q̃; x5)

Bμ,power(q̃; x5)
= c(μ;qμ,r) ∈ R(0), ∀x5 ∈ R+

0 ⇔ qμ − r − 2 = 0. (130)

It follows that, if Aμ,power(q̃; x5) �= 0 and Bμ,power(q̃; x5) �= 0, assuming the Power

Ansatz form for gAB,DR5(x
5) yields the following expression of the hypothesis Υ of func-

tional independence (110):

∃ (at least one) μ ∈ {0, 1, 2, 3} :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qμ − (r + 2) �= 0⎧⎪⎨⎪⎩ qμ �= 0

r + 2 �= 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭⇔

⇔ qμ �= 0, r + 2 �= 0, qμ �= r + 2. (131)

In other words, in the framework of the ”Power Ansatz” for the metric tensor the

reductive nature of the Υ hypothesis depends on the value of the rational parameters

q0, q1, q2, q3 and r, exponents of the components of gAB,DR5power(x
5).

A similar result holds true if one assumes for the �5 metric the generalized form

gAB,DR5power−conform(x5) (52), obtained by the anisotropic rescaling (55). We have, in
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this case, for Aμ(x5) and Bμ(x
5):

Aμ,power−conform(x5) =

=
1

(x5
0)

2

(ϑμ)
3
2

(ϑ5)
1
2

(δμ0 − δμ1 − δμ2 − δμ3)
qμ

2

(
1 +

r

2

)(x5

x5
0

) 3
2
qμ− 1

2
r−2

=

=
(ϑμ)

3
2

(ϑ5)
1
2

Aμ,power(x
5); (132)

Bμ,power−conform(x5) =

= (ϑμϑ5)
1
2

(
x5

x5
0

) 1
2
qμ+ 1

2
r

= (ϑμϑ5)
1
2 Bμ,power(x

5). (133)

whence

±Aμ,power(q̃; x5)

Bμ,power(q̃; x5)
=

= ± 1

(x5
0)

2

ϑμ

ϑ5

(δμ0 − δμ1 − δμ2 − δμ3)
qμ

2

(
1 +

r

2

)(x5

x5
0

)qμ−r−2

(134)

and
±Aμ,power(q̃; x5)

Bμ,power(q̃; x5)
= c(μ;qμ,r) ∈ R(0), ∀x5 ∈ R+

0 ⇔ qμ − r − 2 = 0. (135)

Therefore conditions (126)-(129), obtained in the power case, hold unchanged, together

with expression (130) of the Υ hypothesis. Thus, we can conclude that, independently of a

possible anisotropic, conformal rescaling of the coordinates of the type (55), the reductive

nature of the Υ hypothesis depends only on the value of the parameters q0, q1, q2, q3 and

r.

The discussion of the possible reductivity of the Υ hypothesis for all the 12 classes of

solutions of the 5-d. Einstein equations in vacuum derived in Subsubsect. 3.6.2 (labelled

by the 5-d. set q̃≡ (q0, q1, q2, q3, r)) allows one to state that in 5 general cases such

hypothesis of functional independence is reductive indeed. The Killing equations can be

explicitly solved in such cases. We refer the reader to Appendix B for these general cases,

and go to discuss the special cases of the 5-d. phenomenological power metrics describing

the four fundamental interactions (see Subsubsect.3.4.2).

5. Killing Symmetries

for the 5-d.Metrics of Fundamental Interactions

We want now to investigate the possible reductivity of the hypothesis Υ of functional

independence (110) for the 5-d. metrics (41)-(44), and solve the related Killing equations.

Due to the piecewise structure of these phenomenological metrics, we shall distinguish the

two energy ranges x5 � x5
0 (above threshold, case a) and 0 < x5 < x5

0 (below threshold,
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case b) for sub-Minkowskian metrics (electromagnetic and weak), and 0 < x5 ≤ x5
0 (below

threshold, case a’) and x5 > x5
0 (above threshold, case b’) for over-Minkowskian metrics

(strong and gravitational). Needless to say, cases a, a’ correspond to the Minkowskian

behavior of the related metrics, whereas b, b’ refer to the non-Minkowskian one.

5.1 Electromagnetic and Weak Interactions

5.1.1 Validity of the Υ-Hypothesis

Case a) (Minkowskian conditions). In the energy range x5 � x5
0 the 5-d. metrics

(41), (42) read:

gAB,DR5(x
5) = diag

(
1,−1,−1,−1,±f(x5)

)
. (136)

This metric is a special case of

gAB,DR5(x
5) = diag

(
a,−b,−c,−d,±f(x5)

)
(137)

(a, b, c, d, f(x5) ∈ R+
0 ). From definitions (124) and (125) one gets:

Aμ(x5) = 0

Bμ(x5) = (f(x5))
1
2

⎫⎪⎬⎪⎭∀μ = 0, 1, 2, 3. (138)
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Therefore the hypothesis Υ of functional independence (110) is not satisfied ∀μ ∈ {0, 1, 2, 3}.
The 15 Killing equations corresponding to the e.m. and weak metrics (41), (42) are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(x5)ξ0,0(x
A) = 0;

ξ0,1(x
A) + ξ1,0(x

A) = 0;

ξ0,2(x
A) + ξ2,0(x

A) = 0;

ξ0,3(x
A) + ξ3,0(x

A) = 0;

ξ0,5(x
A) + ξ5,0(x

A) = 0;

f(x5)ξ1,1(x
A) = 0;

ξ1,2(x
A) + ξ2,1(x

A) = 0;

ξ1,3(x
A) + ξ3,1(x

A) = 0;

ξ1,5(x
A) + ξ5,1(x

A) = 0;

f(x5)ξ2,2(x
A) = 0;

ξ2,3(x
A) + ξ3,2(x

A) = 0;

ξ2,5(x
A) + ξ5,2(x

A) = 0;

f(x5)ξ3,3(x
A) = 0;

ξ3,5(x
A) + ξ5,3(x

A) = 0;

2f(x5)ξ5,5(x
A)− f ′(x5)ξ5(x

A) = 0.

(139)

Solving this system requires some cumbersome algebra but is trivial. The result for

the contravariant Killing vector is

ξ0(x1, x2, x3, x5) = T 0 − B1x1 −B2x2 −B3x3 + Ξ0F (x5); (140)

ξ1(x0, x2, x3, x5) = T 1 −B1x0 + Θ3x2 −Θ2x3 − Ξ1F (x5); (141)

ξ2(x0, x1, x3, x5) = T 2 −B2x0 −Θ3x1 + Θ1x3 − Ξ2F (x5); (142)

ξ3(x0, x1, x2, x5) = T 3 −B3x0 + Θ2x1 −Θ1x2 − Ξ3F (x5); (143)

ξ5(x, x5) = ±
(
f(x5)

)− 1
2 [T 5 − Ξ0x0 − Ξ1x1 − Ξ2x2 − Ξ3x3]. (144)

Here, we have put

F (x5) =

∫
dx5

(
f(x5)

) 1
2 (145)
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and omitted an unessential integration constant in (144) (it would only amount to a

redefinition of T μ, μ = 0, 1, 2, 3 in Eqs.(139)-(143)). By inspection of such equations, it

is easy to get the following physical interpretation of the real parameters entering into

the expression of ξA(x, x5):

Θ1, Θ2, Θ3 ∈ R
space-space angles of true rotations

periodicity T=2π−→ Θ1, Θ2, Θ3 ∈ [0, 2π);

boost rapidity

B1, B2, B3 ∈ R
space-time angles of pseudorotations

;

T 0, T 1, T 2, T 3 ∈ R
space-time translation parameters

.

(146)

As to the parameters Ξμ (μ = 0, 1, 2, 3) and T 5, their physical meaning (if any) depends

on the signature of the fifth dimension.

The metric (136) can be dealt with along the same lines with only minor changes. In

particular, the contravariant Killing vector is obtained from Eqs.(139)-(143) by a suitable

rescaling of the parameters in the space-time components, namely

ξ0(x1, x2, x3, x5) =
1

a

[
T 0 − B1x1 − B2x2 − B3x3 + Ξ0F (x5)

]
; (147)

ξ1(x0, x2, x3, x5) =
1

b

[
T 1 − B1x0 + Θ3x2 −Θ2x3 − Ξ1F (x5)

]
; (148)

ξ2(x0, x1, x3, x5) =
1

c

[
T 2 − B2x0 −Θ3x1 + Θ1x3 − Ξ2F (x5)

]
; (149)

ξ3(x0, x1, x2, x5) =
1

d

[
T 3 − B3x0 + Θ2x1 −Θ1x2 − Ξ3F (x5)

]
; (150)

ξ5(x, x5) = ±
(
f(x5)

)− 1
2 [T 5 − Ξ0x0 − Ξ1x1 − Ξ2x2 − Ξ3x3]. (151)

Case b) (Non-Minkowskian conditions). In this energy range the form of the

metrics (41), (42) is:

gAB,DR5(x
5) = diag

(
1,−

(
x5

x5
0

)1/3

,−
(

x5

x5
0

)1/3

,−
(

x5

x5
0

)1/3

,±f(x5)

)
.

(152)

We have, from the definitions (124) and (125) of the ”vectors” Aμ(x5) and Bμ(x5):

A0(x
5) = 0;

Ai(x
5) =

= −
(

x5

x5
0

)1/6
1

6
√

f(x5) (x5)
2
3 (x5

0)
1
3

[
1

x5
+

1

2

f ′(x5)

f(x5)

]
,

∀i = 1, 2, 3; (153)
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B0(x
5) = 0;

Bi(x
5) =

√
f(x5)

(
x5

x5
0

)1/6

∀i = 1, 2, 3. (154)

Therefore

±Ai(x
5)

Bi(x5)
= ∓ 1

6f(x5) (x5)
2
3 (x5

0)
1
3

[
1

x5
+

1

2

f ′(x5)

f(x5)

]
∀i = 1, 2, 3. (155)

Then, the Υ hypothesis (110) is not satisfied for μ = 0 but it does for μ = i = 1, 2, 3

under the following condition:

1

x5
+

1

2

f ′(x5)

f(x5)
�= cf(x5)

(
x5
) 2

3 , c ∈ R. (156)

Therefore, on the basis of the results of Subsect.4.3, it is easy to get that the con-

travariant components of the 5-d. Killing vector ξA(x, x5) for metric (151) in the range

0 < x5 < x5
0 are given by Eqs.(118)-(122), where (some of) the real parameters satisfy

the following system (namely system (123) for metric (151)):

(01)

⎧⎪⎪⎨⎪⎪⎩
[d8x

2x3 + d7x
2 + d6x

3 + (d5 + a2)] +

+

(
x5

x5
0

)1/3

[h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)] = 0;

(02)

⎧⎪⎪⎨⎪⎪⎩
(d8x

1x3 + d7x
1 + d4x

3 + d3) +

+

(
x5

x5
0

)1/3

[l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)] = 0;

(03)

⎧⎪⎪⎨⎪⎪⎩
(d8x

1x2 + d6x
1 + d4x

2 + d2) +

+

(
x5

x5
0

)1/3

[m8x
1x2 + m7x

1 + m6x
2 + (m5 + g2)] = 0;

(12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

x5

x5
0

)1/3

(h2x
0x3 + h1x

0 + h4x
3 + h3) +

+

(
x5

x5
0

)1/3

(l2x
0x3 + l1x

0 + l4x
3 + l3) = 0;

(13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

x5

x5
0

)1/3

(h2x
0x2 + h8x

0 + h4x
2 + h6) +

+

(
x5

x5
0

)1/3

(m8x
0x2 + m7x

0 + m4x
2 + m3) = 0;

(23)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

x5

x5
0

)1/3

(l2x
0x1 + l6x

0 + l4x
1 + l8)+

+

(
x5

x5
0

)1/3

(m8x
0x1 + m6x

0 + m4x
1 + m2) = 0.

(157)
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Solving system (156) yields:

d2 = d3 = d4 = d6 = d7 = d8 = 0;

m4 = m6 = m7 = m8 = 0; m5 = −g2;

h1 = h2 = h4 = h8 = 0; h3 = −l3; h6 = −m3; h7 = −e2; h8 = −m7;

l1 = l2 = l4 = l6 = 0; l5 = −e4; l8 = −m2;

a2 = −d5.

(158)

Then, one gets the following expression for ξA(x, x5):

ξ0 = F̃0 = (a1 + d1 + K0); (159)

ξ1(x2, x3) = −F̃1(x
2, x3) = l3x

2 + m3x
3 − (K1 + h5 + e1) ; (160)

ξ2(x1, x3) = −F̃2(x
1, x3) = −l3x

1 + m2x
3 − (l7 + K2 + e3); (161)

ξ3(x0, x1, x2) = −F̃3(x
0, x1, x2) = −m3x

1 −m2x
2 − (m1 + g1 + c); (162)

ξ5 = 0. (163)

5.1.2 Killing Isometries for Electromagnetic and Weak Metrics

The 5-d. contravariant Killing vector ξA(x, x5) for the whole range of energies, Eqs.(146)-

(150) and (158)-(162), can be cast in a compact form by using the distribution Θ̂R(x5−x5
0)

(right specification of the Heaviside distribution: see Eq.(64)), by ridenominating (∀i =

1, 2, 3)

Bi ≡ ζ i;

Θi ≡ θi;

Ξ0 ≡ ζ5,

(164)

and putting

(a1 + d1 + K0) = T 0;

− (K1 + h5 + e1) = T 1;

−(l7 + K2 + e3) = T 2;

−(m1 + g1 + c) = T 3;

l3 = Θ3;

m3 = −Θ2;

m2 = Θ1.

(165)
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Then, one gets

ξ0(x1, x2, x3, x5) =

= Θ̂R(x5 − x5
0)
[
−ζ1x1 − ζ2x2 − ζ3x3 + ζ5F (x5)

]
+ T 0; (166)

ξ1(x0, x2, x3, x5) =

= Θ̂R(x5 − x5
0)
[
−ζ1x0 − Ξ1F (x5)

]
+ θ3x2 − θ2x3 + T 1; (167)

ξ2(x0, x1, x3, x5) =

= Θ̂R(x5 − x5
0)
[
−ζ2x0 − Ξ2F (x5)

]
− θ3x1 + θ1x3 + T 2; (168)

ξ3(x0, x1, x2, x5) =

= Θ̂R(x5 − x5
0)
[
−ζ3x0 − Ξ3F (x5)

]
+ θ2x1 − θ1x2 + T 3; (169)

ξ5(x, x5) =

= Θ̂R(x5 − x5
0)
{
∓
(
f(x5)

)− 1
2 [ζ5x0 + Ξ1x1 + Ξ2x2 + Ξ3x3 − T 5]

}
, (170)

valid for both ranges 0 < x5 < x5
0 and x5 � x5

0.

By considering slices of �5 at dx5 = 0, one gets:

x5 = x5 ∈ R+
0

⎧⎪⎪⎨⎪⎪⎩
⇔ dx5 = 0 ⇒

(in gen.)
�

F (x5) =
∫

dx5 (f(x5))
1
2 = 0;

⇒
(in gen.)

�

ξ5(x, x5) = 0.
(171)

Therefore, it easily follows from the expression of the Killing vector (165)-(169) that, in

the energy range x5 � x5
0, the 5-d. Killing group of such constant-energy sections is the

standard Poincaré group P (1, 3):

P (1, 3)STD. = SO(1, 3)STD. ⊗s Tr.(1, 3)STD. (172)

(as it must be), whereas, in the energy range 0 < x5 < x5
0, the Killing group is given by

SO(3)STD. ⊗s Tr.(1, 3)STD.. (173)
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5.1.3 Solution of Killing Equations below Threshold
with Violated Υ-Hypothesis

In case b), the hypothesis Υ of functional independence (110) does not hold for any value

of μ if the metric coefficient f(x5) satisfies the following equation

1

2

f ′(x5)

f(x5)
− cf(x5)

(
x5
) 2

3 +
1

x5
= 0, c ∈ R. (174)

Such ordinary differential equation (ODE) belongs to the homogeneous class of type

G and to the special rational subclass of Bernoulli’s ordinary differential equations (it

becomes separable for c = 0). The only solution of (173) is

f(x5) =
1

6c(x5)
5
3 + γ(x5)2

, c, γ ∈ R. (175)

Since f(x5) must be dimensionless, it is convenient to make this feature explicit by intro-

ducing the characteristic parameter x5
0 ∈ R+

0 (which, as by now familiar, is the threshold

energy of the interaction considered) so that f(x5) ≡ f
(

x5

x5
0

)
. Eq.(174) can be therefore

rewritten as

f(x5) ≡ f

(
x5

x5
0

)
=

1

6c

(
x5

x5
0

) 5
3

+ γ

(
x5

x5
0

)2
, c, γ ∈ R, (176)

where of course a rescaling of constants c and γ occurred. Moreover, because in general

f(x5) has to be strictly positive ∀x5 ∈ R+
0 , c and γ must necessarily satisfy the condition:

c, γ ∈ R : 6c + γ

(
x5

x5
0

) 1
3

> 0 ∀x5 ∈ R+
0 ⇔

⇔ c, γ ∈ R+ (not both zero). (177)

Therefore, imposing the complete violation of the Υ hypothesis of functional independence

allows one to determine the functional form of the fifth metric coefficient. This result

will be seen to hold also for the strong and the gravitational interaction above threshold

(see Subsubsects.5.2.3 and 5.3.2).

Then, we get the following expression for the 5-d. metric describing e.m. and weak

interactions in the energy range 0 < x5 < x5
0 if the Υ hypothesis is not satisfied by any

value of μ:

gAB,DR5(x
5) = diag

(
1,−

(
x5

x5
0

)1/3

,−
(

x5

x5
0

)1/3

,−
(

x5

x5
0

)1/3

,

±
(

6c

(
x5

x5
0

) 5
3

+ γ

(
x5

x5
0

)2
)−1

⎞⎠ . (178)
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The solution of the Killing equations is cumbersome in this case, too. After some

tedious and lengthy algebra, one gets the following expression for the contravariant Killing

5-vector ξA(x, x5) corresponding to the e.m. and weak metric (151):

ξ0 = c0; (179)

ξ1(x2, x3) = −
(
a2x

2 + a3x
3 + a4

) (
x5

0

)1/3
; (180)

ξ2(x1, x3) =
(
a2x

1b1x
3 − b6

) (
x5

0

)1/3
; (181)

ξ3(x1, x2) =
(
a3x

1 − b1x
2 − b2

) (
x5

0

)1/3
; (182)

ξ5 = 0, (183)

where the dimensions of the real transformation parameters are (on account of the fact

that ξ has the dimension of a length)

[a2] = [a3] = [b1] = l−1/3, [a4] = [b2] = [b6] = l2/3, [c0] = l. (184)

The 5-d. Killing group of isometries is therefore

SO(3)STD.(E3) ⊗s Tr.(1, 3)STD. (185)

with E3 being the 3-d. manifold with metric gij = −
(

x5

x5
0

)1/3

diag (1, 1, 1).

5.2 Strong Interaction

5.2.1 Validity of the Υ-Hypothesis

Case a’) (Minkowskian conditions). In the energy range 0 < x5 � x5
0 the metric (43)

for strong interaction reads

gAB,DR5(x
5) = diag

(
1,− 2

25
,− 4

25
,−1,±f(x5)

)
. (186)

From Eqs.(124) and (125) one finds, for the fake vectors Aμ(x5), Bμ(x
5) in this case:

Aμ(x5) = 0, ∀μ = 0, 1, 2, 3;

B0(x
5) = B3(x

5) =
5√
2
B1(x

5) =
5

2
B2(x

5) =
(
f(x5)

) 1
2 . (187)

Therefore the Υ -hypothesis (110) is not satisfied by any value of μ ∈ {0, 1, 2, 3}. The

15 Killing equations corresponding to metric (185) are given by Eq.(138), i.e. coincide

with those relevant to the 5-d. e.m. and weak metrics in the range x5 � x5
0. Since the

contravariant metric tensor is

gAB
DR5(x

5) = diag

(
1,−25

2
,−25

4
,−1,±

(
f(x5)

)−1
)

, (188)



102 Electronic Journal of Theoretical Physics 6, No. 20 (2009) 59–192

the components of the contravariant Killing 5-vector ξA(x, x5)
ESC on

= gAB
DR5(x

5)ξB(x, x5)

are given by:

ξ0(x1, x2, x3, x5) = −B1x1 − B2x2 − B3x3 + Ξ0F (x5) + T 0; (189)

ξ1(x0, x2, x3, x5) =
25

2

[
−B1x0 + Θ3x2 −Θ2x3 − Ξ1F (x5) + T 1

]
; (190)

ξ2(x0, x1, x3, x5) =
25

4

[
−B2x0 −Θ3x1 + Θ1x3 − Ξ2F (x5) + T 2

]
; (191)

ξ3(x0, x1, x2, x5) = −B3x0 + Θ2x1 −Θ1x2 − Ξ3F (x5) + T 3; (192)

ξ5(x, x5) = ∓
(
f(x5)

)− 1
2 [Ξ0x0 + Ξ1x1 + Ξ2x2 + Ξ3x3 − T 5], (193)

in the same notation of Eqs.(139)-(143).

Case b’) (Non-Minkowskian conditions). In the energy range x5 > x5
0 the 5-d.

strong metric takes the form:

gAB,DR5(x
5) = diag

((
x5

x5
0

)2

,− 2

25
,− 4

25
,−

(
x5

x5
0

)2

,±f(x5)

)
. (194)

From Eqs.(124) and (125) one gets:

A0(x
5) = −A3(x

5) =
(x5)

2

(x5
0)

3

(
f(x5)

)− 1
2

(
1

x5
+

1

2

f ′(x5)

f(x5)

)
;

A1(x
5) = A2(x

5) = 0; (195)

B0(x
5) = B3(x

5) =
x5

x5
0

(
f(x5)

) 1
2 ;

B1(x
5) =

1√
2
B2(x

5) =

√
2

5

(
f(x5)

) 1
2 ; (196)

±A0(x
5)

B0(x5)
=
∓A3(x

5)

B3(x5)
= ± x5

f(x5) (x5
0)

2

(
1

x5
+

1

2

f ′(x5)

f(x5)

)
. (197)

Therefore, on account of the strict positiveness of f(x5), the hypothesis Υ of functional

independence is satisfied by μ = 0, 3 under the following constraints:

1

x5
+

1

2

f ′(x5)

f(x5)
�= 0;

x5

f(x5)

(
1

x5
+

1

2

f ′(x5)

f(x5)

)
�= c⇔ 1

x5
+

1

2

f ′(x5)

f(x5)
�= c

f(x5)

x5
, c ∈ R0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭⇔
⇔ 1

x5
+

1

2

f ′(x5)

f(x5)
�= c

f(x5)

x5
, c ∈ R. (198)

The case is analogous to the case b) of the e.m. and weak metrics. Thus, the components

of the contravariant Killing 5-vector ξA(x, x5) for the phenomenological strong metric in
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the range x5 > x5
0 are given by Eqs. (158)-(162), where (some of) the real parameters

are constrained to obey the following system (see Eq.(156)):

(01)

⎧⎪⎪⎨⎪⎪⎩
(

x5

x5
0

)2

[d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)] +

+
2

25
[h2x

2x3 + h1x
2 + h8x

3 + (h7 + e2)] = 0;

(02)

⎧⎪⎪⎨⎪⎪⎩
(

x5

x5
0

)2

(d8x
1x3 + d7x

1 + d4x
3 + d3)+

+
4

25
[l2x

1x3 + l1x
1 + l6x

3 + (l5 + e4)] = 0;

(03)

⎧⎪⎪⎨⎪⎪⎩
(

x5

x5
0

)2

(d8x
1x2 + d6x

1 + d4x
2 + d2)+

+

(
x5

x5
0

)2

[m8x
1x2 + m7x

1 + m6x
2 + (m5 + g2)] = 0;

(12)

⎧⎪⎨⎪⎩
2

25
(h2x

0x3 + h1x
0 + h4x

3 + h3)+

+
4

25
(l2x

0x3 + l1x
0 + l4x

3 + l3) = 0;

(13)

⎧⎪⎪⎨⎪⎪⎩
2

25
(h2x

0x2 + h8x
0 + h4x

2 + h6) +

+

(
x5

x5
0

)2

(m8x
0x2 + m7x

0 + m4x
2 + m3) = 0;

(23)

⎧⎪⎪⎨⎪⎪⎩
4

25
(l2x

0x1 + l6x
0 + l4x

1 + l8)+

+

(
x5

x5
0

)2

(m8x
0x1 + m6x

0 + m4x
1 + m2) = 0.

(199)

The solutions of this system are given by

d3 = d4 = d6 = d7 = d8 = 0; d2 = − (m5 + g2) ;

m2 = m3 = m4 = m6 = m7 = m8 = 0;

h1 = h2 = h4 = h6 = h8 = 0;

l1 = l2 = l4 = l6 = l8 = 0; l5 = −e4;

h3 = −2l3; h7 = −e2; a2 = −d5.

(200)

Replacing (199) into Eqs.(158)-(162) yields the explicit form of the Killing 5-vector

ξA(x, x5):

ξ0(x3) = F̃0(x
3) = d2x

3 + (a1 + d1 + K0); (201)

ξ1(x2) = −F̃1(x
2) = 2l3x

2 − (K1 + h5 + e1) ; (202)
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ξ2(x1) = −F̃2(x
1) = −l3x

1 − (l7 + K2 + e3); (203)

ξ3(x0) = −F̃3(x
0) = d2x

0 − (m1 + g1 + c); (204)

ξ5 = 0. (205)

5.2.2 Killing Isometries for Strong Metric

As in the e.m. and weak case, it is possible to express the contravariant Killing vector

of the phenomenological strong metric in a unique form, valid in the whole energy range.

This is done by ridenominating the parameters in Eqs.(188)-(192) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Bi ≡ ζ i;

Θi ≡ θi;

Ξ0 ≡ ζ5

(206)

(∀i = 1, 2, 3) and putting, in Eqs.(200)-(204):

(a1 + d1 + K0) = T 0;

− (K1 + h5 + e1) =
25

2
T 1;

−(l7 + K2 + e3) =
25

4
T 2;

−(m1 + g1 + c) = T 3;

l3 =
25

4
Θ3 :

d2 = −B3.

(207)

Then, exploiting the right specification Θ̂R(x5
0 − x5) of the step function, we get the

following general form of the contravariant Killing 5-vector ξA(x, x5) for the 5-d phe-

nomenological metric of the strong interaction:

ξ0(x1, x2, x3, x5) =

= Θ̂R(x5
0 − x5)

[
−ζ1x1 − ζ2x2 + ζ5F (x5)

]
− ζ3x3 + T 0; (208)

ξ1(x0, x2, x3, x5) =

=
25

2
Θ̂R(x5

0 − x5)
[
−ζ1x0 − θ2x3 − Ξ1F (x5)

]
+

25

2
θ3x2 +

25

2
T 1; (209)
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ξ2(x0, x1, x3, x5) =

=
25

4
Θ̂R(x5

0 − x5)
[
−ζ2x0 + θ1x3 − Ξ2F (x5)

]
− 25

4
θ3x1 +

25

4
T 2; (210)

ξ3(x0, x1, x2, x5) =

= Θ̂R(x5
0 − x5)

[
θ2x1 − θ1x2 − Ξ3F (x5)

]
− ζ3x0 + T 3; (211)

ξ5(x, x5) =

= Θ̂R(x5
0 − x5)

{
∓
(
f(x5)

)− 1
2 [ζ5x0 + Ξ1x1 + Ξ2x2 + Ξ3x3 − T 5]

}
. (212)

By redefining

25

2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T 1

ζ1

θ2

Ξ1

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T 1′

ζ1′

θ2′

Ξ1′

25

4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T 2

ζ2

θ1

θ3

Ξ2

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T 2′

ζ2′

θ1′

θ3′

Ξ2′

(213)

in Eqs.(207)-(211) (and omitting the apices) one finds eventually:

ξ0(x1, x2, x3, x5) =

= Θ̂R(x5
0 − x5)

[
− 2

25
ζ1x1 − 4

25
ζ2x2 + ζ5F (x5)

]
− ζ3x3 + T 0; (214)

ξ1(x0, x2, x3, x5) =

= Θ̂R(x5
0 − x5)

[
−ζ1x0 − θ2x3 − Ξ1F (x5)

]
+ 2θ3x2 + T 1; (215)

ξ2(x0, x1, x3, x5) =

= Θ̂R(x5
0 − x5)

[
−ζ2x0 + θ1x3 − Ξ2F (x5)

]
− θ3x1 + T 2; (216)

ξ3(x0, x1, x2, x5) =

= Θ̂R(x5
0 − x5)

[
2

25
θ2x1 − 4

25
θ1x2 − Ξ3F (x5)

]
− ζ3x0 + T 3; (217)
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ξ5(x, x5) =

= Θ̂R(x5
0 − x5)

{
∓
(
f(x5)

)− 1
2 [ζ5x0 +

2

25
Ξ1x1 +

4

25
Ξ2x2 + Ξ3x3 − T 5]

}
. (218)

The 5-d. strong metric (185) in the energy range 0 < x5 � x5
0 can be put in the form:

gAB,DR5(x
5) = diag

(
gμν,M4

(x5),±f(x5)
)
, (219)

where M4 is a standard 4-d. Minkowskian manifold with the following coordinate rescal-

ing (contraction):

x1 −→
√

2

5
x1 ⇒

(in gen.)
�

dx1 −→
√

2

5
dx1;

x2 −→ 2

5
x2 ⇒

(in gen.)
�

dx2 −→ 2

5
dx2. (220)

Considering slices at dx5 = 0 of �5 entails ξ5(x, x5) = 0 (see Eq.(170)). Then, the explicit

form (213)-(217) of the Killing vector entails that — as expected — the Killing group is

the standard Poincaré group P (1, 3) (suitably rescaled):

[P (1, 3)STD. = SO(1, 3)STD. ⊗s Tr.(1, 3)STD.]|x1−→
√

2
5

x1,x2−→ 2
5
x2 . (221)

For x5 > x5
0 the strong metric is given by Eq.(190). Therefore, it easily follows from

Eqs.(213)-(217) that the 5-d Killing group of the constant-energy sections of �5 is(
SO(2)STD.,Π(x1,x2−→√2x2) ⊗Bx3,STD.

)
⊗s Tr.(1, 3)STD.. (222)

Here SO(2)STD.,Π(x1,x2−→√2x2) = SO(2)
STD.,Π(x1−→

√
2

5
x1,x2−→ 2

5
x2)

is the 1-parameter group

(generated by the usual, special-relativistic generator S3
SR|x2−→√2x2) of the 2-d. rotations

in the plane Π(x1, x2) (characterized by the coordinate contractions (219)), and Bx3,STD.

is the usual one-parameter group (generated by the special-relativistic generator K3
SR) of

the standard Lorentzian boosts along x̂3. The direct and semidirect nature of the group

products in (220) and (221) has the following explanation. In general (independently of

contractions and/or dilations of coordinates) the standard mixed Lorentz algebra is given

by the commutation relations (ESC on):

[Si
SR, Ki

SR] = εijlK
l
SR, ∀i, j = 1, 2, 3, (223)

where as usual εijl is the Levi-Civita 3-tensor of rank 3 and Si
SR and Ki

SR are the i-th

generators of (true) rotations and Lorentz boosts, respectively. It follows that

[S3
SR, K3

SR]
∣∣
x2−→√2x2

(
= [S3

SR

∣∣
x2−→√2x2 , K3

SR]
)

= 0 (224)

what justifies the presence of the direct group product in Eq.(221). The semidirect

product of
(
SO(2)STD.,Π(x1,x2−→√2x2) ⊗ Bx3,STD.

)
by Tr.(1, 3)STD. is due instead to the
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fact that the standard mixed Poincaré algebra (independently of contractions and/or

dilations of coordinates) is defined by the following commutation relations (ESC on)

(∀i, j, k = 1, 2, 3):

[Ki
SR, Υ0

SR] = −Υi
SR;

[Ki
SR, Υj

SR] = −δijΥ0
SR;

[Si
SR, Υ0

SR] = 0;

[Si
SR, Υk

SR] = εiklΥ
l
SR,

(225)

where Υ0
SR, Υ1

SR, Υ2
SR and Υ3

SR are the generators of the standard space-time translations.

5.2.3 Solution of Strong Killing Equations above Threshold
with Violated Υ-Hypothesis

In the energy range x5 > x5
0 , if condition (197) is not satisfied, the hypothesis Υ of

functional independence (110) does not hold for any value of μ. In this case the metric

coefficient f(x5) obeys the equation

1

2

f ′(x5)

f(x5)
− c

f(x5)

x5
+

1

x5
= 0, c ∈ R. (226)

Such ODE is separable ∀c ∈ R. By solving it, one gets the following form of the 5-d metric

of the strong interaction (for x5 > x5
0 and when the Υ hypothesis (110) is violated):

gAB,DR5(x
5) =

= diag

⎛⎜⎜⎜⎝
(

x5

x5
0

)2

,− 2

25
,− 4

25
,−

(
x5

x5
0

)2

,± 1

γ

(
x5

x5
0

)2

+ c

⎞⎟⎟⎟⎠ (227)

with

c, γ ∈ R : γ

(
x5

x5
0

)2

+ c > 0, ∀x5 ∈ R+
0 ⇔ c, γ ∈ R+(not both zero). (228)

Solving the related Killing equations (after lengthy but elementary calculations) yields

for the contravariant Killing 5-vector ξA(x, x5) the following compact form (valid for

c, γ ∈ R+ but not vanishing simultaneously):

ξ0(x3; c, γ) = (1− δc,0)
[
−
(
x5

0

)2 (
(1− δγ,0) d3x

3 + T0

)]
; (229)

ξ1(x2; γ) = − (1− δγ,0)
25

2
d2x

2 − 25

2
T1; (230)

ξ2(x1; γ) = (1− δγ,0)
25

4
d2x

1 − 25

4
T2; (231)
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ξ3(x0; c, γ) = − (1− δc,0) (1− δγ,0)
(
x5

0

)2 (
d3x

0 + T3

)
; (232)

ξ5
(
x5; c, γ

)
= ±δc,0

γα

(x5
0)

2 x5, (233)

where we identified −ε = T0 in Eq.(228), highlighted the parametric dependence of ξA

on c and γ, and introduced the Kronecker δ.

The dimensions and ranges of the transformation parameters are

[α] = l2, [d3] = l−2, [T0] = [T3] = l−1, [T1] = [T2] = l, [d2] = l0; (234)

α, d2, d3, T0, T1, T2, T3 ∈ R. (235)

The 4-d.Killing group (i.e. the isometry group of the slices of �5 at dx5 = 0), too,

can be written in the compact form[
Tr.

x̂1,x̂2STD.
⊗ (1− δc,0) Tr.

x̂0STD.
⊗ (1− δc,0) (1− δγ,0)Tr.

x̂3STD.

]
⊗s

⊗s

[
(1− δγ,0) SO(2)STD.(Π2) ⊗ (1− δc,0) (1− δγ,0) B

STD.x̂3

]
. (236)

Here, Π2 is the 2-d. manifold (x1, x2) with metric rescaling x2 −→
√

2x2 with respect to

the Euclidean level, and SO(2)STD.(Π2), B
STD. x̂3 are the 1-parameter abelian groups gen-

erated by S3
SR|x2−→√2x2 and K3

SR, respectively. The semidirect nature of the group prod-

uct is determined by the following commutation relations of the mixed, roto-translational,

space-time Lorentz algebra (ESC on):[
Si

SR, Υj
SR

]
= εijlΥ

l
SR. (237)

The direct product of SO(2)STD.(Π2) and B
STD. x̂3 and of the translation groups Tr.

x̂1,x̂2 STD.
,

Tr.
x̂0 STD.

, Tr.
x̂3 STD.

is instead a consequence of the commutativity of the generators:[
S3

SR, K3
SR

]∣∣
x2−→√2x2 = 0; (238)

[Υμ
SR, Υν

SR] = 0. (239)

5.3 Gravitational Interaction

5.3.1 Validity of the Υ-Hypothesis

Case a’) (Minkowskian conditions). In the energy range 0 < x5 � x5
0 the 5-d. metric

for gravitational interaction (44) becomes:

gAB,DR5(x
5) = diag

(
1,−b2

1(x
5),−b2

2(x
5),−1,±f(x5)

)
. (240)

The ”vectors” Aμ(x5) and Bμ(x5) (124) and (125) read therefore:

A0(x
5) = A3(x

5) = 0;

B0(x
5) = B3(x

5) =
(
f(x5)

) 1
2 ; (241)
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Ai(x
5) = bi(x

5)(f(x5))−1/2·

·
[
−
(
b′i(x

5)
)2

+ bi(x
5)b′′i (x

5)− 1

2
bi(x

5)b′i(x
5)f ′(x5)(f(x5))−1

]
,

i = 1, 2; (242)

Bi(x
5) = bi(x

5)(f(x5))1/2, i = 1, 2; (243)

±Ai(x
5)

Bi(x5)
= ±(f(x5))−1

[
−
(
b′i(x

5)
)2

+ bi(x
5)b′′i (x

5)− 1

2
bi(x

5)b′i(x
5)f ′(x5)(f(x5))−1

]
,

i = 1, 2. (244)

One has

Ai(x
5) �= 0⇔

⇔
[
− (b′i(x

5))
2
+ bi(x

5)b′′i (x
5)− 1

2
bi(x

5)b′i(x
5)f ′(x5)(f(x5))−1

]
�= 0;

Bi(x
5) �= 0 ∀x5 ∈ R+

0 (no condition) ;

±Ai(x
5)

Bi(x5)
�= c, c ∈ R0 ⇔

⇔ − (b′i(x
5))

2
+ bi(x

5)b′′i (x
5)− 1

2
bi(x

5)b′i(x
5)f ′(x5)(f(x5))−1 �= cf(x5),

c ∈ R0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇔

⇔ −
(
b′i(x

5)
)2

+ bi(x
5)b′′i (x

5)− 1

2
bi(x

5)b′i(x
5)f ′(x5)(f(x5))−1 �=

�= cf(x5), c ∈ R, i = 1, 2. (245)

Therefore the validity for μ = 1, 2 of the Υ hypothesis (110) (not satisfied for μ = 0, 3)

depends on the nature and the functional form of the metric coefficients b2
1(x

5) and b2
2(x

5).
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In general the 15 Killing equations corresponding to metric (239) are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(x5)ξ0,0(x
A) = 0;

ξ0,1(x
A) + ξ1,0(x

A) = 0;

ξ0,2(x
A) + ξ2,0(x

A) = 0;

ξ0,3(x
A) + ξ3,0(x

A) = 0;

ξ0,5(x
A) + ξ5,0(x

A) = 0;

f(x5)ξ1,1(x
A)∓ b1(x

5)b′1(x
5)ξ5(x

A) = 0;

ξ1,2(x
A) + ξ2,1(x

A) = 0;

ξ1,3(x
A) + ξ3,1(x

A) = 0;

b1(x
5)(ξ1,5(x

A) + ξ5,1(x
A))− 2b′1(x

5)ξ1(x
A) = 0;

f(x5)ξ2,2(x
A)∓ b2(x

5)b′2(x
5)ξ5(x

A) = 0;

ξ2,3(x
A) + ξ3,2(x

A) = 0;

b2(x
5)(ξ2,5(x

A) + ξ5,2(x
A))− 2b′2(x

5)ξ2(x
A) = 0;

f(x5)ξ3,3(x
A) = 0;

ξ3,5(x
A) + ξ5,3(x

A) = 0;

2f(x5)ξ5,5(x
A)− f ′(x5)ξ5(x

A) = 0.

(246)

By making suitable assumptions on the functional form of the metric coefficients b2
i (x

5)

(i = 1, 2), it is possible in 11 cases (which include all those of physical and mathematical

interest) to solve the relevant Killing equations for the gravitational interaction and get

the related isometries (see Appendix C).

Case b’) (Non-Minkowskian conditions). In the energy range x5 > x5
0 the 5-d.
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gravitational metric (44) reads:

gAB,DR5(x
5) =

= diag

(
1

4

(
1 +

x5

x5
0

)2

,−b2
1(x

5),−b2
2(x

5),−1

4

(
1 +

x5

x5
0

)2

,±f(x5)

)
. (247)

Eqs.(124) and (125) yield

A0(x
5) = −A3(x

5) =

=
1

8

(
1 +

x5

x5
0

)
x5

(x5
0)

2 (f(x5))
− 1

2

[
1

x5
+

1

2

(
1 +

x5
0

x5

)
f ′(x5)

f(x5)

]
;

B0(x
5) = B3(x

5) =
1

2

(
1 +

x5
0

x5

)
(f(x5))

1
2 ;

(248)

±A0(x
5)

B0(x5)
=
∓A3(x

5)

B3(x5)
= ±1

4

1

f(x5)

x5

(x5
0)

2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
, (249)

whereas Eqs.(241)-(244) of the previous case still hold for Ai(x
5) and Bi(x

5) (i = 1, 2).

Then, since f(x5) is strictly positive and

x5, x5
0 ∈ R+

0

⇒
(in gen.)

�

(
1 +

x5
0

x5

)
∈ R+

0 , (250)

the Υ-hypothesis of functional independence for the gravitational metric over threshold

is satisfied at least for μ = 0, 3 under the following conditions:

1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)
�= 0;

x5

f(x5)

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
�= �⇔

1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)
�= �f(x5)

x5
, � ∈ R0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇔

⇔ 1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)
�= �f(x5)

x5
, � ∈ R. (251)

Therefore, in the energy range x5 > x5
0, if the Υ-hypothesis of functional independence

for the gravitational metric is not satisfied for μ = 0, 3, the metric coefficient f(x5) obeys

the following equation

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)
− �f(x5)

x5
+

1

x5
= 0, � ∈ R (252)
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which, since x5
0, x5, f(x5) ∈ R+

0 , can be rewritten as

f ′(x5) +
2

x5 + x5
0

f(x5)− 2�
x5 + x5

0

(
f(x5)

)2
= 0, � ∈ R. (253)

Such ordinary differential equation belongs to the separable subclass of the Bernoulli type

∀� ∈ R. Its only solution is

f(x5) =
1

γ(x5 + x5
0)

2 + � , �, γ ∈ R, (254)

which can be expressed in dimensionless form as (by suitably rescaling the constants �, γ):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(x5) ≡ f

(
x5

x5
0

)
=

1

γ

(
1 +

x5

x5
0

)2

+ �
,

c, γ ∈ R : γ

(
1 +

x5

x5
0

)2

+ � > 0 ∀x5 ∈ R+
0 ⇔ �, γ ∈ R+ (not both zero).

(255)

The corresponding 5-d gravitational metric is therefore

gAB,DR5(x
5) =

= diag

⎛⎜⎜⎜⎝
1

4

(
1 +

x5

x5
0

)2

,−b2
1(x

5),−b2
2(x

5),

−1

4

(
1 +

x5

x5
0

)2

,±
(

γ

(
1 +

x5

x5
0

)2

+ �
)−1

⎞⎟⎟⎟⎠ .

(256)

Thus, in both energy ranges the Υ-hypothesis is violated for μ = 0, 3. Below threshold

this is automatically ensured by the form of the gravitational metric (239), whereas

above threshold such a requirement determines the expression of the fifth metric coefficient

f(x5).

5.3.2 The 5-d. Υ-Violating Metrics of Gravitation

We want now to discuss the 5-d. gravitational metrics which violate the Υ-hypothesis

of functional independence ∀μ = 0, 1, 2, 3 in either energy range 0 < x5 � x5
0,grav and

x5 > x5
0,grav.

It was shown in Subsubsect.5.3.1 that, when the Υ-hypothesis is not satisfied by

μ = 0, 3, the gravitational metric is given by Eq.(239) and Eq.(255) below threshold and

over threshold, respectively. If one imposes in addition that the Υ-hypothesis is violated

also by μ = 1 and/or 2, such a requirement permits to get the expressions of the metric

coefficients b2
1(x

5), b2
2(x

5) in terms of f(x5).
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Indeed, in this case it follows from Eq.(244) that the metric coefficients b2
1(x

5), b2
2(x

5)

and f(x5) satisfy the following ODE (ESC off)11

−
(
b′k(x

5)
)2

+ bk(x
5)b′′k(x

5)− 1

2
bk(x

5)b′k(x
5)f ′(x5)(f(x5))−1 − ckf(x5) = 0,

ck ∈ R, k = 1 and/or 2, (257)

whose solution for f(x5) in terms of bk(x
5) is:

f(x5) =
(b′k(x

5))
2

dkb2
k(x

5)− ck
⇔

⇔ dkb
2
k(x

5)f(x5)−
(
b′k(x

5)
)2 − ckf(x5) = 0,

k = 1 and/or 2, dk ∈ R+, ck ∈ R−(not both zero). (258)

In dimensionless form for f(x5) and b2
k(x

5), we have

f(x5) ≡ f

(
x5

x5
0

)
=

(
b′k

(
x5

x5
0

))2

dkb
2
k

(
x5

x5
0

)
− ck

⇔

⇔ dkb
2
k

(
x5

x5
0

)
f

(
x5

x5
0

)
−
(

b′k

(
x5

x5
0

))2

− ckf

(
x5

x5
0

)
= 0,

k = 1 and/or 2. (259)

By assuming f(x5) known, one gets the following implicit solution of (257) for bk(x
5)

(dk > 0):

αk ±
∫ x5

dx5′√−f(x5′) +
1√
dk

arctan

( √
dkbk(x

5)√
ck − dkb

2
k (x5)

)
= 0,

k = 1 and/or 2, αk ∈ R, (260)

under the constraint

ck − dkb
2
k

(
x5

x5
0

)
> 0, k = 1 and/or 2 ∀x5 ∈ R+

0 ⇔ dk ∈ R+, ck ∈ R−. (261)

Equation (259) can be solved for all possible pair of values (dk, ck) (even in the limit case

of bk constant). Precisely, one can distinguish the following three cases (k = 1, 2):

I) (dk, ck) ∈ R+
0 × R−0 :

b2
k(x

5) =
ck

dk

tanh2
[√

dk (αk ∓ F (x5))
]{

tanh2
[√

dk (αk ∓ F (x5))
]
− 1

} =

= − ck

dk

{
cosh

[
2
√

dk

(
αk ∓ F (x5)

)]
− 1

}
, αk ∈ R, (262)

11 In the following, the lower index ”k” in the constants means that, in general, these depend on the
metric coefficient bk considered.
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where F (x5) is still given by Eq.(144).

II) (dk, ck) ∈ {0} ×R−0 :

b2
k(x

5) =
(
±
√
−ckF (x5) + δk

)2
, δk ∈ R. (263)

III) (dk, ck) ∈ R+
0 × {0}:

b2
k(x

5) = κ2
k exp

(
2
√

dkF (x5)
)

=

= κ2
k1 exp

(
2
√

dkF (x5)
)

+ κ2
k2 exp

(
−2

√
dkF (x5)

)
,

κk, κki ∈ R0, i = 1, 2. (264)

Let us note that all the previous results hold true in general for any μ ∈ {0, 1, 2, 3}.
They have been discussed by considering μ = k = 1 and/or 2 in order to apply the

results to the case of the DR5 metric of the gravitational interaction, characterized by

the indeterminacy of the metric coefficients bk(x
5), k = 1, 2, and requiring therefore a

treatment of the Υ-violation for μ = k = 1 and/or 2.

The above general formalism allows one to deal with the 5-d. metrics of DR5 for the

gravitational interaction which violate Υ ∀μ = 0, 1, 2, 3 in the energy ranges 0 < x5 �
x5

0,grav and x5 > x5
0,grav.

In the first case the functional form of f(x5) is undetermined, since in general it must

only satisfy the condition f > 0 ∀x5 ∈ R+
0 . As to the space coefficients bk(x

5), k = 1, 2,

one has 9 possible cases, obtained by considering all the possible pairs (I1, I2) (I1, I2 = I,

II, III) of the functional typologies for bk(x
5) corresponding to the pairs of values (dk, ck)

(see Eqs.(261)-(263)). Since the two space coefficients are expressed in terms of the fifth

metric coefficient, one gets ”f(x5)-dependent”, i.e. in general ”functionally parametrized”

metrics.

In the energy range x5 > x5
0,grav, the fifth coefficient is determined by Eq.(252) with

solution (254). The Υ-violating gravitational metric has the form (255), and the space

coefficients bk(x
5), k = 1, 2, are still given by Eqs.(261)-(263). However, now the function

F (x5) can be explicitly evaluated. One has:

F (x5) ≡
∫

dx5
(
f(x5)

) 1
2 = +

∫
dx5

√
f(x5) =

= x5
0

∫
dx5√

γ (x5)2 + 2γx5
0x

5 +
(
� + γ

)
(x5

0)
2

=

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x5

√
�

for (γ, �) ∈ {0} × R+
0 (case A);

x5
0√
γ

ln

(
1 +

x5

x5
0

)
for (γ, �) ∈ R+

0 × {0} (case B);

x5
0√
γ
arcsinh

[√
γ

�

(
1 +

x5

x5
0

)]
for (γ, �) ∈ R+

0 ×R+
0 (case C).

(265)
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Replacing the above expressions (264), corresponding to the 3 possible pairs
(
γ, �

)
, in

Eqs.(261)-(263), one gets all the possible forms of the coefficients b2
1(x

5) and b2
2(x

5) of

the Υ-violating gravitational metric above threshold. The functional typologies of the

spatial coefficients can be labelled by the pair (L, I) (with L = A, B, C labelling the 3

cases of Eq.(264) and I = I, II, III referring as before to the 3 expressions (261)-(263)).

Then, one gets 27 possible forms for the 5-d gravitational metrics violating the hypothesis

Υ in the whole energy range. They can be labelled by (L1I1,L2I2) (L1,L2 = A, B, C,

I1, I2 = I, II, III), in the notation exploited for the functional typology of the metric

coefficients b2
k(x

5) for the indices 1 and 2, according to the above discussion. Their explicit

form is easy to write down, and can be found in ref.[39].

In correspondence to the different gravitational metrics, one gets 27 systems of 15

Killing equations, which would require an explicit solution (or at least not exploiting

theΥ-hypothesis), in order to find the corresponding isometries. However, solving these

systems is far from being an easy task, even by using symbolic-algebraic manipulation

programs.

A possible method of partial solution could be the Lie structural approach, based on

the Lie symmetries obeyed by the system equations. Such a resolution could in principle

be also applied to the general system (245), in which no assumption is made on the

functional forms of the metric coefficients b2
μ(x5) (μ = 0, 1, 2, 3) and f(x5).

6. Infinitesimal-Algebraic Structure

of Killing Symmetries in �5

6.1 Killing Algebra

From the knowledge of the Killing vectors for the 5-d. metrics of the four fundamental

interactions, we can now discuss the algebraic-infinitesimal structure of the related Killing

isometries.

As is well known, the M independent Killing vector fields of a differentiable, N-

dimensional manifold SN do span a linear space K. The maximum number of independent

Killing vectors (i.e. the maximum dimension of K) is N(N+1)/2≥M. They can be related

to the Lie groups of isometries of the manifold as follows. By virtue of the Poincaré-

Birkhoff-Witt theorem and of the Lie theorems, any infinitesimal element δg of a Lie

group GL of order M can be always represented as:

δg
ESC on

= 1 + αA(g)TA + O(
{
α2
A(g)

}
) , (266)

where
{
TA

}
A=1...M

is the generator basis of the Lie algebra of GL and {αA = αA(g)}A=1...M

is a set of M real parameters (of course depending on g ∈ GL). Then, the infinitesimal

transformation in SN corresponding to δg can be written as

x′A(x, α) = xA + δxA(x, α) + O(α2) =

= xA + ξA(x, α) + O(α2), A = 1, 2, ..., N, (267)
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where the contravariant Killing N-vector ξA(x, α) of the manifold reads (ESC on):

ξA(x, α) = ξA
A(x)αA. (268)

Quantities ξA
A(x) are the components of the linearly-independent Killing vectors of K,

and are given by

ξA
A(x) =

∂x′A(x, α)

∂αA

∣∣∣∣
αB=0,∀B=1,...,15

. (269)

The general form of an infinitesimal metric automorphism of SN is therefore

x′A(x, α)
ESC on

= xA + ξA
A(x)αA + O(α2), A = 1, 2, ..., N, (270)

By introducing the canonical vector basis
{
∂A ≡ ∂/∂xA

}
in SN , one has, for the

Killing N-vector ξ̃(x) (ESC on on A and A)12:

ξ̃(x) = ξA
A(x)αA∂A = ξ̃A(x)αA , (271)

where (ESC on)13

ξ̃A(x) = ξA
A(x)∂A. (272)

The M vectors ξ̃A(x) are the infinitesimal generators of the algebra of the Killing group

of symmetries GL of SN . The product of this algebra is, as usual, the commutator[
ξ̃A(x), ξ̃B(x)

]
, A,B = 1, 2, ..., M. (273)

The Killing algebra is then specified by the set of commutation relations[
ξ̃A(x), ξ̃B(x)

]
= CCAB ξ̃C(x) (274)

where CCAB = −CCBA are the M(M-1)/2 structure constants of the algebra.

In the present case of the space �5, it is obviously A = 0, 1, 2, 3, 5. As to the dimension

M (≤ 15) of the Killing manifold, it depends on the explicit solution ξA(x, x5) of the 15

Killing equations (83)-(94), and therefore on the metric gDR5,int.(x
5). In the following,

we shall consider all possible cases of metrics of physical relevance.

6.2 Metric with Constant Space-Time Coefficients

Let us consider the 5.d-metric (136) gAB,DR5(x
5) = diag (a,−b,−c,−d,±f(x5)), spe-

cial cases of which are the electromagnetic and weak metrics above threshold (x5 ≥
x5

0e.m.,weak), Eq.(135), and the strong metric below threshold (0 < x5 ≤ x5
0,strong), Eq.(185).

12 In this subsection, of course, the notation ṽ means a N-vector.
13Care must be exercized in distinguishing the two different vector spaces involved in Eqs.(270)-(271). On
one hand, ξA(x) are the (contravariant) components of the N-dimensional Killing vector ξ(x), belonging
to the (tangent space of) the manifold SN . On the other side, ξ̃A(x) are the components of the M-
dimensional vector belonging to the M-d. Killing space. According to Eq.(271), each ξ̃A(x) is in turn a
vector in (the tangent space of) the manifold SN .
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The solution of the related Killing system for the contravariant Killing 5-vector

ξA(x, α) is given by Eqs.(146)-(151). By making the following identifications

α1 =
1

a
T 0; α2 =

1

a
T 1; α3 =

1

a
T 2; α4 =

1

a
T 3;

α5 = −B1; α6 = −B2; α7 = −B3;

α8 = Θ3; α9 = Θ2; α10 = Θ1;

α11
(±) = ±T 5; α12 = Ξ0; α13 = Ξ1; α14 = Ξ2; α15 = Ξ3,

(275)

ξA(x, α) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ0(x1, x2, x3, x5) = α1 +
1

a
[α5x1 + α6x2 + α7x3 + α12F (x5)] ;

ξ1(x0, x2, x3, x5) = α2 +
1

b
[α5x0 + α8x2 − α9x3 − α13F (x5)] ;

ξ2(x0, x1, x3, x5) = α3 +
1

c
[α6x0 − α8x1 + α10x3 − α14F (x5)] ;

ξ3(x0, x1, x2, x5) = α4 +
1

d
[α7x0 + α9x1 − α10x2 −−α15F (x5)] ;

ξ5(x, x5) = (f(x5))
− 1

2 (α11 ∓ α12x0 ∓ α13x1 ∓ α14x2 ∓ α15x3) .

(276)

Then, it follows from Eq.(268):

ξA
A(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ξμ
A,SR(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,A = 1, 2, 3, 4; (277)

ξA
5 (x0, x1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

a
x0

b

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= δA

0

x1

a
+ δA

1

x0

b
; (278)
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ξA
6 (x0, x2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2

a

0

x0

c

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= δA

0

x2

a
+ δA

2

x0

c
; (279)

ξA
7 (x0, x3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3

a

0

0

x0

d

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= δA

0

x3

a
+ δA

3

x0

d
; (280)

ξA
8 (x1, x2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

x2

b

−x1

c

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= δA

1

x2

b
− δA

2

x1

c
; (281)

ξA
9 (x1, x3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−x3

b

0

x1

d

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −δA

1

x3

b
+ δA

3

x1

d
; (282)

ξA
10(x

2, x3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

x3

c

−x2

d

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= δA

2

x3

c
− δA

3

x2

d
; (283)
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ξA
11(x

5) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

∓ (f(x5))
− 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ∓δA

5

(
f(x5)

)− 1
2 ; (284)

ξA
12(x

0, x5) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F (x5)

a

0

0

0

∓ (f(x5))
− 1

2 x0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= δA

0

F (x5)

a
∓ δA

5

(
f(x5)

)− 1
2 x0; (285)

ξA
13(x

1, x5) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

F (x5)

b

0

0

∓ (f(x5))
− 1

2 x1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= δA

1

F (x5)

b
∓ δA

5

(
f(x5)

)− 1
2 x1; (286)

ξA
14(x

2, x5) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−F (x5)

c

0

∓ (f(x5))
− 1

2 x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −δA

2

F (x5)

c
∓ δA

5

(
f(x5)

)− 1
2 x2; (287)

ξA
15(x

3, x5) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

−F (x5)

d

∓ (f(x5))
− 1

2 x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −δA

3

F (x5)

d
∓ δA

5

(
f(x5)

)− 1
2 x3. (288)

It is easy to see that the 4 Killing 5-vectors ξA
A(x), A = 1, 2, 3, 4 (Eq.(276)) are the
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generators Υμ (μ = 0, 1, 2, 3) of the standard translation group Tr.(1, 3) 14, whereas the

6 Killing 5-vectors ξA
A(x), A = 5, ..., 10 (Eqs.(277)-(282)) are the generators of the de-

formed Lorentz group SO(1, 3)DEF , namely the 3-vectors SDSR and KDSR (associated to

deformed space rotations and boosts, respectively: see ref.[40]) in the self-representation

basis.

The other five Killing 5-vectors ξA
A(x), A = 11, ..., 15, can be identified with the new

generators of the Killing algebra as follows15. By its expression (283), the Killing vector

ξA
11(x

5) is of course the translation generator along x5:

ξA
11(x

5) = Υ5A(x5). (289)

As to the other ξA
A(x) for A = 12, ..., 15, it is easily seen from Eqs.(284)-(287) that

their interpretation as rotation or boost generators depends on the signature of the fifth

coordinate x5, namely on its timelike or spacelike nature:

ξA
12(x

0, x5) =

⎧⎪⎨⎪⎩ ” + ” : Σ1A(x0, x5)

”− ” : Γ1A(x0, x5)
; (290)

ξA
13(x

1, x5) =

⎧⎪⎨⎪⎩ ” + ” : Γ1A(x1, x5)

”− ” : Σ1A(x0, x5)
; (291)

ξA
14(x

2, x5) =

⎧⎪⎨⎪⎩ ” + ” : Γ2A(x2, x5)

”− ” : Σ2A(x2, x5)
; (292)

ξA
15(x

3, x5) =

⎧⎪⎨⎪⎩ ” + ” : Γ3A(x3, x5)

”− ” : Σ3A(x3, x5)
, (293)

where ΣiA and ΓiA (i = 1, 2, 3) denote the new generators (with respect to the SR ones)

corresponding, respectively, to rotations and boosts involving the fifth coordinate.

By direct evaluation of the commutators (274)16, it follows that the ensuing Killing al-

14This is due to the adopted choice of embodying the constants a, b, c, d in the definitions of the transla-
tional parameters αμ (see Eqs.(274)). It is easily seen that, on the contrary, the identification αμ = T μ

leads to the generators of the deformed translation group Tr.(1, 3)DEF. [38] (with the consequent changes
in the commutator algebra).
15Needless to say, the identifications of the Killing vectors ξA

A(x) with the generators of the Killing
symmetry algebra hold except for a sign here and in the subsequent cases.
16Remember that the products in the commutator (22.132) has to be meant as row×column products
of matrices, so that

[ξA(x), ξB(x)] =
[
ξB
A(x)∂B , ξA

B (x)∂A

]
=

=
[
ξB
A(x)ξ

A
B,B(x) − ξB

B (x)ξ
A
A,B(x)

]
∂A →

→ [ξA(x), ξB(x)]
A = ξB

A(x)ξ
A
B,B(x)− ξB

B (x)ξ
A
A,B(x).



Electronic Journal of Theoretical Physics 6, No. 20 (2009) 59–192 121

gebra is made of two pieces: the deformed Poincaré algebra P (1, 3)DEF.={su(2)DEF. ⊗ su(2)DEF.}⊗s

tr.(1, 3)STD., generated by SDSR., KDSR and Υμ (μ = 0, 1, 2, 3) (corresponding to A =

1, ..., 10), expressed by Eqs.(8.37)-(8.39), and the ”mixed” algebra, involving also gener-

ators related to the energy dimension. This latter depends on the timelike or spacelike

nature of x5, and is specified by the following commutation relations (∀μ = 0, 1, 2, 3 and

∀i, j, k=1, 2, 3)17:

1) Timelike x5:

” + ”

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Υ̃5, Υ̃μ

]
= 0 ;

[
Υ̃0, Σ̃1

]
= −Υ̃5;

[
Υ̃0, Γ̃i

]
= 0;

[
Υ̃i, Γ̃j

]
= −Υ̃5δij ;

[
Υ̃i, Σ̃1

]
= 0;

[
K̃i, Γ̃j

]
=

1

gii,DR5

Σ̃1δij;
[
K̃i, Σ̃1

]
=

1

a
Γ̃i =

1

g00,DR5

Γ̃i;

[
K̃i, Υ̃5

]
= 0;

[
S̃i, Υ̃5

]
= 0;

[
S̃i, Σ̃1

]
= 0;

[
S̃i, Γ̃j

]
ESC on on k

= εijk
1

gjj,DR5
Γ̃k;

[
Υ̃5, Σ̃1

]
=

1

a
Υ̃0 =

1

g00,DR5
Υ̃0;

[
Υ̃5, Γ̃i

]
= −Υ̃i;

[
Σ̃1, Γ̃i

]
= K̃i;

[
Γ̃i, Γ̃j

]
ESC on

= −εijkS̃
k.

(294)

It contains the following subalgebras

[
S̃i, S̃j

]
ESC on on k

= −εijk
1

gkk,DR5

S̃k;

[
S̃i, Γ̃j

]
ESC on on k

= εijk
1

gjj,DR5

Γ̃k;

[
Γ̃i, Γ̃j

]
ESC on

= −εijkS̃
k,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
su(2)DEF. ⊗ su(2)DEF..; (295)

17 In the following, for simplicity, we shall omit the DSR specification in the generator symbols.
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[
Υ̃ν , Υ̃μ

]
= 0 ;

[
Υ̃5, Υ̃μ

]
= 0 ,

⎫⎪⎪⎬⎪⎪⎭ tr.(2, 3)STD.. (296)

2) Spacelike x5:

”− ”

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Υ̃5, Υ̃μ

]
= 0 ;

[
Υ̃0, Γ̃1

]
= Υ̃5;

[
Υ̃0, Σ̃i

]
= 0;

[
Υ̃i, Σ̃j

]
= Υ̃5δij;

[
Υ̃i, Γ̃1

]
= 0;

[
K̃i, Σ̃j

]
= − 1

gii,DR5
Γ̃1δij;

[
K̃i, Γ̃1

]
=

1

a
Σ̃i =

1

g00,DR5
Σ̃i;

[
K̃i, Υ̃5

]
= 0;

[
S̃i, Υ̃5

]
= 0;

[
S̃i, Γ̃1

]
= 0;

[
S̃i, Σ̃j

]
ESC on on k

= −εijk
1

gjj,DR5

Σ̃k;[
Υ̃5, Γ̃1

]
=

1

g00,DR5
Υ̃0;

[
Υ̃5, Σ̃i

]
= − 1

gii,DR5
Υ̃i;[

Γ̃1, Σ̃i
]

= −K̃i;
[
Σ̃i, Σ̃j

]
ESC on

= −εijkS̃
k,

(297)

with the subalgebras[
S̃i, S̃j

]
ESC on on k

= −εijk
1

gkk,DR5
S̃k;

[
S̃i, Σ̃j

]
ESC on on k

= −εijk
1

gjj,DR5
Σ̃k;

[
Σ̃i, Σ̃j

]
ESC on

= −εijkS̃
k,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
su(2)DEF. ⊗ su(2)DEF..; (298)

[
Υ̃ν , Υ̃μ

]
= 0 ;

[
Υ̃5, Υ̃μ

]
= 0 ,

⎫⎪⎪⎬⎪⎪⎭ tr.(1, 4)STD.. (299)

Since in this case there are 15 independent Killing vectors, the corresponding Rie-

mann spaces, for the e.m. and weak interactions above threshold and for the strong one



Electronic Journal of Theoretical Physics 6, No. 20 (2009) 59–192 123

below threshold, are maximally symmetric and have therefore constant curvature (zero

for the e.m. and weak interactions, as it is straightforward to check directly by means of

Eq.(135)).

6.3 Strong Metric for Violated Υ-Hypothesis

Let us consider the case of the strong metric above threshold (x5 ≥ x5
0,strong) when the

hypothesis Υ of functional independence is violated ∀μ = 0, 1, 2, 3 (see Subsubsect.5.2.3).

The metric is given by Eq.(226), and for c = 0 takes the form

gAB,DR5(x
5) =

= diag

⎛⎜⎜⎜⎝
(

x5

x5
0

)2

,− 2

25
,− 4

25
,−

(
x5

x5
0

)2

,± 1

γ

(
x5

x5
0

)2

⎞⎟⎟⎟⎠ . (300)

The contravariant Killing vector ξA(x, x5) is given by Eqs.(228)-(232), which read now

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ0 = 0;

ξ1(x2) = −25

2
d2x

2 − 25

2
T1 = α3x2 + α1;

ξ2(x1) =
25

4
d2x

1 − 25

4
T2 =

1

2
α3x1 + α2;

ξ3 = 0;

ξ5 (x5) = ± γα

(x5
0)

2x5 = ±α4x5,

(301)

where the dependence on the transformation parameters αA (A=1,2,3,4) has been made

explicit.

The contravariant Killing vectors ξA
A(x) are therefore

ξA
1 (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ξμ
2,SR(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (302)
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ξA
2 (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ξμ
3,SR(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (303)

ξA
3 (x1, x2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

x2

−x1

2

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (304)

ξA
4,±(x5) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

±x5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (305)

It is possible to do the following identifications:

ξA
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Υ1μ

SR

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Υ1A, α1 = ∓T 1′; (306)

ξA
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Υ2μ

SR

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Υ2A, α2 = ∓T 2′; (307)
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ξA
3 (x1, x2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
S3μ(x)|x2−→√2x2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= S3A, α3 = ∓Θ3; (308)

ξA
4,±(x5) = R(x5). (309)

In Eq.(307), the notation for S3 has to be interpreted in the sense of Subsubsect.5.2.3,

namely it is the generator of rotations in the 2-d. manifold Π2 = (x1, x2) with metric

rescaling x2 −→
√

2x2. One therefore gets the following Killing algebra

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Υ̃1, Υ̃2

]
= 0;[

Υ̃1, S̃3
]

= −1

2
Υ̃2;[

Υ̃2, S̃3
]

= Υ̃1;[
Υ̃i, R̃

]
= 0, i = 1, 2;[

S̃3, R̃
]

= 0.

(310)

6.4 Power-Ansatz Metrics with Violated Υ-Hypothesis

We shall now discuss the infinitesimal algebraic structure of DR5 for the metrics in the

Power Ansatz when the hypothesis Υ of functional independence is not satisfied by any

μ = 0, 1, 2, 3. According to Appendix B, this occurs in five cases (only three of which are

independent). We will consider only the two which correspond to physical metrics.

6.4.1 Case 1

This corresponds to the VI class of solutions, characterized by the exponent set q̃V I =

(p, 0, 0, 0, p− 2). The 5-d. metric is given by Eq.(B.75). The contravariant Killing 5-

vector ξA(x, x5) depends on the timelike or spacelike nature of the fifth coordinate, and
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writes (cfr. Eqs.(B.79)-(B.83))

ξ0(x0, x5; p) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

” + ” :

(x5
0)

p−1

[
A cos

(
p

2

x0

x5
0

)
− B sin

(
p

2

x0

x5
0

)]
(x5)−

p
2 + α(x5

0)
p;

”− ” :

(x5
0)

p−1

[
C cosh

(
p

2

x0

x5
0

)
+ D sinh

(
p

2

x0

x5
0

)]
(x5)−

p
2 + α(x5

0)
p;

ξ1(x2, x3) = −Θ3x2 −Θ2x3 + T 1;

ξ2(x1, x3) = Θ3x1 −Θ1x3 + T 2;

ξ3(x1, x2) = Θ2x1 + Θ1x2 + T 3;

ξ5(x0, x5, p) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

” + ” :

(x5
0)

p−2

[
A sin

(
p

2

x0

x5
0

)
+ B cos

(
p

2

x0

x5
0

)]
(x5)−( p

2
−1);

”− ” :

− (x5
0)

p−2

[
C sinh

(
p

2

x0

x5
0

)
+ D cosh

(
p

2

x0

x5
0

)]
(x5)−(p

2
−1).

(311)

By the identifications

−Θ3 = α5; Θ2 = α6; Θ1 = −α7;

α(x5
0)

p = T 0(α, x5
0, p) = α1(α, x5

0, p); T i = αi+1, i = 1, 2, 3;

” + ”

⎧⎪⎨⎪⎩A (x5
0)

p
2
−2

= α8

B (x5
0)

p
2
−2

= α9
; ”− ”

⎧⎪⎨⎪⎩C (x5
0)

p
2
−2

= α8

D (x5
0)

p
2
−2

= α9
,

(312)
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the Killing vector can be written as18

ξ0(x0, x5; p) =

= α1 +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
” + ” : (x5

0)
p
2
+1

[
α8 cos

(
p

2

x0

x5
0

)
− α9 sin

(
p

2

x0

x5
0

)]
(x5)−

p
2 ;

”− ” : (x5
0)

p
2
+1

[
α8 cosh

(
p

2

x0

x5
0

)
+ α9 sinh

(
p

2

x0

x5
0

)]
(x5)−

p
2 ;

ξ1(x2, x3) = α2 + α5x2 − α6x3;

ξ2(x1, x3) = α3 − α5x1 + α7x3;

ξ3(x1, x2) = α4 + α6x1 − α7x2;

ξ5(x0, x5, p) =

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
” + ” : (x5

0)
p
2

[
α8 sin

(
p

2

x0

x5
0

)
+ α9 cos

(
p

2

x0

x5
0

)]
(x5)−( p

2
−1);

”− ” : − (x5
0)

p
2

[
α8 sinh

(
p

2

x0

x5
0

)
+ α9 cosh

(
p

2

x0

x5
0

)]
(x5)−( p

2
−1).

(313)

One gets therefore, for the Killing vectors ξA
A(x) (A = 1, ..., 9):

ξA
A(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ξμ
A,SR(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,A = 1, 2, 3, 4; (314)

ξA
5 (x1, x2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

x2

−x1

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ξμ
8,SR(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (315)

18The definitions of αA for A = 8, 9 have been chosen so to make also these transformation parameters
dimensionless.
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ξA
6 (x1, x3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−x3

0

x1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ξμ
9,SR(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (316)

ξA
7 (x2, x3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

x3

−x2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ξμ
10,SR(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (317)

ξA
8,±(x0, x5, p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x5
0)

p
2
+1

cosh

(
p

2

x0

x5
0

)
(x5)−

p
2

0

0

0

± (x5
0)

p
2 sinh

(
p

2

x0

x5
0

)
(x5)−(p

2
−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (318)

ξA
9,±(x0, x5, p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∓ (x5
0)

p
2
+1

sinh

(
p

2

x0

x5
0

)
(x5)−

p
2

0

0

0

± (x5
0)

p
2 cosh

(
p

2

x0

x5
0

)
(x5)−( p

2
−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (319)

The above Killing vectors can be identified with generators as follows:

ξA
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Υ0μ

SR

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Υ1A; (320)
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ξA
i+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Υiμ

SR

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −ΥiA, i = 1, 2, 3; (321)

ξA
i+4 (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ξμ
i+7,SR (x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S3μ
SR(x)

S2μ
SR(x)

S1μ
SR(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= SiA, i = 1, 2, 3; (322)

ξA
8,±(x0, x5; p) = Z1A

± (x0, x5; p); (323)

ξA
9,±(x0, x5; p) = Z2A

± (x0, x5; p). (324)

The Killing algebra is then specified by the following commutation relations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Υ̃μ, Υ̃ν

]
= 0 ∀μ, ν = 0, 1, 2, 3;

[
S̃i(x), S̃j(x)

]
ESC on

= εijkS̃
k ∀i, j = 1, 2, 3;

[
S̃i(x), Υ̃0

]
= 0 ∀i, j = 1, 2, 3;

[
S̃i(x), Υ̃j

]
ESC on

= εijkΥ̃
k ∀i, j = 1, 2, 3;

[
Υ̃0, Z̃1

±(x0, x5, p)
]

=
p

2x5
0

Z̃2
±(x0, x5, p);

[
Υ̃0, Z̃2

±(x0, x5, p)
]

= ∓ p

2x5
0

Z̃1
±(x0, x5, p);

[
Υ̃i, Z̃1

±(x0, x5, p)
]

=
[
Υ̃i, Z̃2

±(x0, x5, p)
]

= 0;

[
S̃i(x), Z̃m

± (x0, x5, p)
]

= 0 ∀i = 1, 2, 3, ∀m = 1, 2.

(325)

It is easily seen that the Killing algebra for this case contains the subalgebra su(2)STD.⊗s

tr.(1, 3)STD..
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6.4.2 Cases 2-4

The metrics belonging to classes II (q̃II = (0, p, 0, 0, p− 2)), IV (q̃IV = (0, 0, 0, p, p− 2))

and IX (q̃IX = (0, 0, p, 0, p− 2)) differ only for an exchange of spatial axes (see Eq.(A.86)

for the first case). They are discussed in Subsects.B.2.2-B.2.4. The Killing algebra for all

these three (physically equivalent) metrics can be dealt with by an unitary mathematical

approach.

Let us label the three classes II, IV and IX by i = 1, 2, 3 respectively (according to

the space axis involved). The metric coefficients are given, in compact form, by

gAB,DR5,i

⎧⎪⎪⎨⎪⎪⎩
g00 = −gjj = 1, j �= i, j ∈ {j1, j2} , j1 < j2;

gii (x
5) = −

(
x5

x5
0

)p

; g55 (x5) = ±
(

x5

x5
0

)p−2

.

(326)

As easily seen, the three indices i, j1, j2 take the values {123; 213; 312}. The contravariant

Killing vector has the form (cfr. Eqs.(B.88)-(B.92))

ξ0(xj1 , xj2; α) = α1 + α5xj1 + α6xj2 ;

ξi
±(xi, x5; α) = αi+1(α, x5

0, p)+

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
” + ” : (x5

0)
p
2
+1

[
α8 cosh

(
p

2

xi

x5
0

)
+ α9 sinh

(
p

2

xi

x5
0

)]
(x5)−

p
2 ;

”− ” : (x5
0)

p
2
+1

[
α8 cos

(
p

2

xi

x5
0

)
− α9 sin

(
p

2

xi

x5
0

)]
(x5)−

p
2 ;

(327)

ξj1(x0, xj2 ; α) = αj1+1 + α5x0 + α7xj2 ;

ξj2(x0, xj1; α) = αj2+1 + α6x0 − α7xj1;

ξ5
±(xi, x5; α) =

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
” + ” : (x5

0)
p
2

[
α8 sinh

(
p

2

xi

x5
0

)
+ α9 cosh

(
p

2

xi

x5
0

)]
(x5)−(p

2
−1);

”− ” : − (x5
0)

p
2

[
α8 sin

(
p

2

xi

x5
0

)
+ α9 cos

(
p

2

xi

x5
0

)]
(x5)−( p

2
−1).

(328)

(329)

where

” + ”

⎧⎪⎨⎪⎩A (x5
0)

p
2
−2

= α8

B (x5
0)

p
2
−2

= α9
; ”− ”

⎧⎪⎨⎪⎩C (x5
0)

p
2
−2

= α8

D (x5
0)

p
2
−2

= α9
;

αi+1(α, x5
0, p) = −α(x5

0)
p;

α7 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∓Θ, i = 1;

±Θ, i = 2;

∓Θ, i = 3.

(330)
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The parameter α7 corresponds to a true infinitesimal rotation in the 2-d. Euclidean plane

Π(xj1 ,xj2).

Therefore the explicit form of the Killing vectors ξA
A(x) (A = 1, ..., 9) is

ξA
A(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ξμ
A,SR(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,A = 1, i + 1, j1 + 1, j2 + 1; (331)

ξA
5 (x0, xj1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xj1

x0

(j1-th row)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i = 1 :

⎛⎜⎝ ξμ
6,SR(x0, x2)

0

⎞⎟⎠
i = 2 :

⎛⎜⎝ ξμ
5,SR(x0, x1)

0

⎞⎟⎠
; (332)

ξA
6 (x0, xj2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xj2

x0

(j2-th row)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i = 1 :

⎛⎜⎝ ξμ
7,SR(x0, x3)

0

⎞⎟⎠
i = 2 :

⎛⎜⎝ ξμ
7,SR(x0, x3)

0

⎞⎟⎠
i = 3 :

⎛⎜⎝ ξμ
6,SR(x0, x2)

0

⎞⎟⎠

; (333)

ξA
7 (xj1, xj2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

xj2

(j2-th row)

0

xj1

(j1-th row)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i = 1 :

⎛⎜⎝ ξμ
10,SR(x2, x3)

0

⎞⎟⎠
i = 2 :

⎛⎜⎝−ξμ
9,SR(x1, x3)

0

⎞⎟⎠
i = 3 :

⎛⎜⎝−ξμ
8,SR(x1, x2)

0

⎞⎟⎠

; (334)
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ξA
8,±(xi, x5; p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0⎧⎪⎪⎪⎨⎪⎪⎪⎩
” + ” : (x5

0)
p
2
+1

cosh

(
p

2

xi

x5
0

)
(x5)−

p
2

”− ” : (x5
0)

p
2
+1

cos

(
p

2

xi

x5
0

)
(x5)−

p
2

(i-th row)

0

0⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x5

0)
p
2 sinh

(
p

2

xi

x5
0

)
(x5)−( p

2
−1)

(x5
0)

p
2 sin

(
p

2

xi

x5
0

)
(x5)−( p

2
−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; (335)

ξA
9,±(xi, x5 : p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0⎧⎪⎪⎪⎨⎪⎪⎪⎩
” + ” : (x5

0)
p
2
+1

sinh

(
p

2

xi

x5
0

)
(x5)−

p
2

”− ” : − (x5
0)

p
2
+1

sin

(
p

2

xi

x5
0

)
(x5)−

p
2

(i-th row)

0

0⎧⎪⎪⎪⎨⎪⎪⎪⎩
− (x5

0)
p
2 cosh

(
p

2

xi

x5
0

)
(x5)−( p

2
−1)

− (x5
0)

p
2 cos

(
p

2

xi

x5
0

)
(x5)−( p

2
−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (336)

The 9 Killing vectors can be identified with the generators of the related algebra as

follows:

ξA
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Υ0μ

SR

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Υ1A, α1 = T 0; (337)
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ξA
A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΥAμ
SR

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ΥAA,A = i, j1, j2,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

αi+1(α, x5
0, p) = −T i(α, x5

0, p)

αj1+1(α, x5
0, p) = −T j1(α, x5

0, p)

αj2+1(α, x5
0, p) = −T j2(α, x5

0, p)

; (338)

ξA
5 (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎨⎪⎩
i = 1 : K2μ

SR(x)

i = 2, 3 : K1μ
SR(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, α5 =

⎧⎪⎨⎪⎩ ρ2, i = 1

ρ1, i = 2, 3
; (339)

ξA
6 (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎨⎪⎩
i = 1, 2 : K3μ

SR(x)

i = 3 : K2μ
SR(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, α6 =

⎧⎪⎨⎪⎩ ρ3, i = 1, 2

ρ2, i = 3
; (340)

ξA
7 (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i = 1 : S1μ
SR(x)

i = 2 : −S2μ
SR(x)

i = 3 : S3μ
SR(x)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, α7 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−Θ1, i = 1

Θ2, i = 2

−Θ3, i = 3

; (341)

ξA
8,∓(xi, x5; p) = Z1A

∓ (xi, x5; p); (342)

ξA
9,∓(xi, x5; p) = Z2A

∓ (xi, x5; p). (343)

The commutation relations of the Killing algebra are therefore[
Υ̃μ, Υ̃ν

]
= 0 ∀μ, ν = 0, 1, 2, 3;
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i = 1 :
[
K̃2(x), K̃3(x)

]
= −S̃1(x)

i = 2 :
[
K̃1(x), K̃3(x)

]
= S̃2(x)

i = 3 :
[
K̃1(x), K̃2(x)

]
= −S̃3(x)

;

[
Z̃1
∓(xi, x5; p), Z̃2

∓(x0, x5; p)
]

= 0;

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Υ̃0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i = 1 :

⎧⎪⎨⎪⎩ K̃2(x)

K̃3(x)

i = 2 :

⎧⎪⎨⎪⎩ K̃1(x)

K̃3(x)

i = 3 :

⎧⎪⎨⎪⎩ K̃1(x)

K̃2(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎧⎪⎨⎪⎩ Υ̃j1

Υ̃j2

;

⎡⎢⎢⎢⎢⎣Υ̃0,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i = 1 : S̃1(x)

i = 2 : −S̃2(x)

i = 3 : S̃3(x)

⎤⎥⎥⎥⎥⎦ = 0;

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Υ̃i,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i = 1 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K̃2(x)

K̃3(x)

S̃1(x)

i = 2 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K̃1(x)

K̃3(x)

−S̃2(x)

i = 3 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K̃1(x)

K̃2(x)

S̃3(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0;

⎡⎢⎣Υ̃j1,

⎧⎪⎨⎪⎩ i = 1 : K̃2(x)

i = 2, 3 : K̃1(x)

⎤⎥⎦ = Υ̃0;
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⎡⎢⎣Υ̃j1 ,

⎧⎪⎨⎪⎩ i = 1, 2 : K̃3(x)

i = 3 : K̃2(x)

⎤⎥⎦ = 0;

⎡⎢⎢⎢⎢⎣Υ̃j1 ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i = 1 : S̃1(x)

i = 2 : −S̃2(x)

i = 3 : S̃3(x)

⎤⎥⎥⎥⎥⎦ = −Υ̃j2 ;

⎡⎢⎣Υ̃j2 ,

⎧⎪⎨⎪⎩ i = 1 : K̃2(x)

i = 2, 3 : K̃1(x)

⎤⎥⎦ = 0;

⎡⎢⎣Υ̃j2,

⎧⎪⎨⎪⎩ i = 1, 2 : K̃3(x)

i = 3 : K̃2(x)

⎤⎥⎦ = Υ̃0;

⎡⎢⎢⎢⎢⎣Υ̃j2,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i = 1 : S̃1(x)

i = 2 : −S̃2(x)

i = 3 : S̃3(x)

⎤⎥⎥⎥⎥⎦ = Υ̃j1;

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i = 1 :
[
K̃2(x), S̃1(x)

]
= −K̃3(x)

i = 2 :
[
K̃1(x),−S̃2(x)

]
= −K̃3(x)

i = 3 :
[
K̃1(x), S̃3(x)

]
= −K̃2(x)

;

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i = 1 :
[
K̃3(x), S̃1(x)

]
= K̃2(x)

i = 2 :
[
K̃3(x),−S̃2(x)

]
= K̃1(x)

i = 3 :
[
K̃2(x), S̃3(x)

]
= K̃1(x)

;

[
Υ̃0, Z̃1

∓(x; p)
]

=
[
Υ̃0, Z̃2

∓(x; p)
]

= 0;[
Υ̃i, Z̃1

∓(x; p)
]

=
p

2x5
0

Z̃2
∓(x; p);[

Υ̃i, Z̃2
∓(x; p)

]
= ∓ p

2x5
0

Z̃1
∓(x; p);[

Υ̃j1 , Z̃1
∓(x; p)

]
=
[
Υ̃j1 , Z̃2

∓(x; p)
]

= 0;[
Υ̃j2 , Z̃1

∓(x; p)
]

=
[
Υ̃j2 , Z̃2

∓(x; p)
]

= 0;
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z̃1,2
∓ (x; p),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i = 1 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K̃2(x)

K̃3(x)

S̃1(x)

i = 2 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K̃1(x)

K̃3(x)

−S̃2(x)

i = 3 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K̃1(x)

K̃2(x)

S̃3(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

(344)

It is easy to see that in all three cases i = 1, 2, 3 the Killing algebra contains the

subalgebra so(1, 2)⊗s tr.(1, 3), generated by

Υ̃μ︸︷︷︸
tr.(1,3)

;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i = 1 : K̃2(x); K̃3(x); S̃1(x);

i = 2 : K̃1(x); K̃3(x);−S̃2(x);

i = 3 : K̃1(x); K̃2(x); S̃3(x).︸ ︷︷ ︸
so(1,2)

(345)

Some remarks are in order. For all metrics discussed in this section, it was possible,

in general, neither to identify the global algebra obeyed by the Killing generators, nor

even ascertain its Lie nature. Such an issue deserves further investigations. However, it

is clearly seen from the explicit forms of the generators and of the commutation relations

that, even in cases (like that corresponding to metric (135)) in which the space-time sector

is Minkowskian, the presence of the fifth dimension implies transformations involving the

energy coordinate (see definitions (289)-(292) of the generators Σ̃i, Γ̃j), and therefore

entirely new physical symmetries. Moreover, it is easily seen from Eq.(266), expressing

the general infinitesimal form of a metric automorphism in �5, and from the explicit

form of the Killing vectors, that the isometric transformations are in general nonlinear

(in particular in x5). Then, the preliminary results obtained seemingly show that the

isometries of �5 related to the derived Killing algebras require an invariance of physical

laws under nonlinear coordinate transformations, in which energy is directly involved.
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7. Conclusions

The examples of Killing symmetries we just discussed show some peculiar features of �5

isometries corresponding to the 5-d. phenomenological metrics of the four fundamental

interactions. Indeed, due to the piecewise nature of such metrics, the respective sym-

metries are strongly related to the energy range considered. This is at variance with

the DSR case, in which the (deformed) isometries of M̃ are independent of the energy

parameter x5. This is why we never speak of a symmetry as related to a given interaction

in the DSR context. On the contrary, in DR5 the metric nature of x5, and the consequent

piecewise structure of the phenomenological metrics, is fundamental in determining the

�5 isometries. As a matter of fact, for a given interaction, in general different Killing

symmetries are obtained in the two energy ranges below and above threshold. This is

reflected in the discontinuous behavior of the �5 Killing vectors at the energy threshold

x5
0,int., namely one has in general

lim
x5−→x5+

0,int.

ξA
DR5,int.(x

5) �= lim
x5−→x5−

0,int.

ξA
DR5,int.(x

5). (346)

Conversely, at metric level, there is a continuity in the 5-d. metric tensor at the energy

threshold (as clearly seen by their expressions in terms of the Heaviside function: see

Subsubsect.3.5.1):

lim
x5−→x5+

0,int.

gAB,DR5,int.(x
5) = lim

x5−→x5−
0,int.

gAB,DR5,int.(x
5) =

= gAB,DR5,int.(x
5
0,int.). (347)

This implies that symmetries present in an energy range in which the space-time sector

is standard Minkowskian — or at least its metric coefficients are constant — may no

longer hold when (in a different energy range) the space-time of �5 becomes Minkowskian

deformed, and viceversa.

As already stressed, this is essentially due to the change of nature (from parameter to

coordinate) of the energy x5 in the passage DSR→DR5, i.e. in the geometrical embedding

of M̃ in �5. In this process, at the metric level, the slicing properties (36)-(37) hold,

namely the sections of �5 at constant energy x5 = x5 (dx5 = 0) do possess the same

metric structure of M̃
(
x5
)
. This is no longer true at the level of the Killing symmetries.

We can write, symbolically:

Isometries of �5|dx5=0⇔x5=x5 �=

�= Isometries of M̃
(
x5 = x5

)
= Deformed Poincaré group P (1, 3)10

DEF.. (348)

In fact, in increasing the dimension number by taking energy as the fifth coordinate, some

of the 10 symmetry degrees of freedom of the maximal Killing group of DSR (i.e. the

deformed Poincaré group) are lost.

The Killing isometries are therefore strictly related to the geometrical context consid-

ered. This is easily seen on account of the fact that the slicing process is carried out in
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a genuine Riemannian geometric framework, in which the effect of the fifth coordinate is

perceptible even at the four-dimensional level of space-time sections. From the point of

view of the algebraic structure, this is reflected by the arising of new generators, associ-

ated to true or pseudo rotations involving both the space-time coordinates and the energy

one. This situation exactly reminds that occurring in Special Relativity, where the pres-

ence of time as a genuine coordinate — no longer a parameter as in classical physics —,

together with the ensuing geometrical structure of the Minkowski space, does affect the

physics in the ordinary, Euclidean 3-space (the ”shadow” of the pseudoeuclidean metric

of M). This is a further evidence that the embedding of M̃ in �5 is not a mere formal

artifact, but has deep physical motivations and implications.

We shall see in a forthcoming paper [41] that similar considerations apply to dynamics,

too.
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A Connection and Curvature in �5

For reference, let us give the explicit expression of the main geometric quantities in the

Riemannian space �5 [20, 22].

- Connection ΓA
BC(x5) (the prime denotes derivation with respect to x5):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ0
05 = Γ0

50 =
b′0
2b0

; Γ1
15 = Γ1

51 =
b′1
2b1

;

Γ2
25 = Γ2

52 =
b′2
2b2

; Γ3
35 = Γ3

53 =
b′3
2b3

;

Γ5
00 = −b0b

′
0

2f
; Γ5

11 =
b1b

′
1

2f
; Γ5

22 =
b2b

′
2

2f
;

Γ5
33 =

b3b
′
3

2f
; Γ5

55 =
f ′

2f
.

(A 1)

The Riemann-Christoffel (curvature) tensor in �5 is given by

RA
BCD(x5) = ∂CΓA

BD − ∂DΓA
BC + ΓA

KCΓK
BD − ΓA

KDΓK
BC . (A 2)

- Riemann-Christoffel tensor RABCD(x5):

R0101 =
b′0b

′
1

4f
; R0202 =

b′0b
′
2

4f
; R0303 =

b′0b
′
3

4f
; (A 3.1)

R0505 =
b′0f

′b0 + (b′0)
2 − 2b′′0b0f

4b0f
; (A 3.2)
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R1212 = −b′1b
′
2

4f
; R1313 = −b′1b

′
3

4f
; R1515 =

b′1f
′b + (b′1)

2 − 2b′′1b1f

4b1f
; (A 3.3)

R2323 = −b′2b
′
3

4f
; R2525 =

b′2f
′b2 + (b′2)

2 − 2b′′2b2f

4cf
; (A 3.4)

R3535 =
b′3f

′b3 + (b′3)
2 − 2b′′3b3f

4b3f
. (A 3.5)

- Ricci tensor RAB(x5):

R00 = −1

2

b′′0
f
− b′0

4f

(
−b′0

b0

+
b′1
b

+
b′2
b2

− f ′

f

)
; (A 4)

R11 =
1

2

b′′1
f

+
b′1
4f

(
b′0
b0

− b′1
b1

+
b′2
b2

+
b′3
b3

− f ′

f

)
; (A 5)

R22 =
1

2

b′′2
f

+
b′2
4f

(
b′0
b0

+
b′1
b1
− b′2

b2
+

b′3
b3
− f ′

f

)
; (A 6)

R33 =
1

2

b′′3
f

+
b′3
4f

(
b′0
b0

+
b′1
b1

+
b′2
b2
− b′3

b3
− f ′

f

)
; (A 7)

R44 = −1

2

(
b′0
b0

+
b′1
b1

+
b′2
b2

+
b′3
b3

)′
+

f ′

4f

(
b′0
b0

+
b′1
b1

+
b′2
b2

+
b′3
b3

)
−

−1

4

[(
b′0
b0

)2

+

(
b′1
b1

)2

+

(
b′2
b2

)2

+

(
b′3
b3

)2
]

.

(A 8)

- Scalar curvature R(x5):
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R(x5) =
b1b

′
1f(b′2b3b0 + b′3b2b0 + b′0b2b3) + b2b3 [2b′′1b1f − b0(b

′
1)

2f − b0b
′
1f
′b1]

4b2
1f

2b2b3b0
+

+
b′2b2f(b′1b3b0 + b′3b0b1 + b′0b3b1) + b0b1b3 [2b′′2b2f − (b′2)

2f − b′2f
′b2]

4b2
2f

2b3b0b1
+

+
b′3b3f(b′1b0b2 + b′2b0b1 + b′0b2b1) + b0b1b2 [2b′′3b3f − (b′3)

2f − b′3f
′b3]

4b2
3f

2b2b0b1

+

+
b′0b0f (b′1b2b3 + b′2b3b1 + b′3b2b1) + b1b2b3 [2b′′0b0f − (b′0)

2f − b′0f
′b0]

4b2
0f

2b2b3b1
+

+
1

4f 2b2
1b

2
2

{b2
2 [2b′′1b1f − (b′1)

2f − b′1f
′b1] + b2

1 [2b′′2b2f − (b′2)
2f − b′2f

′b2]}+

+
1

4f 2b2
0b

2
3

{b2
0 [2b′′3b3f − (b′3)

2f − b′3f
′b3] + b2

3 [2b′′0b0f − (b′0)
2f − b′0f

′b0]} .

(A 9)

B Reductivity of the Υ-Hypothesis

for the 12 Classes of the Vacuum Einstein’s Equations

in the Power Ansatz

We shall discuss here the possible reductivity of the Υ-hypothesis of functional indepen-

dence, stated in Subsect.4.2, for the 12 classes of Power-Ansatz solutions of the Einstein

equations in vacuum (derived in Sect.3.6), and solve explicitly the Killing equations in

the 5 cases in which this hypothesis is violated. In the notation of Subsect.3.6, each class

will be specified by an exponent set q̃≡(q0, q1, q2, q3, r).

B1 Analysis of Reductivity of the Υ-Hypothesis

B2 Class (I)

q̃I =
(
n,−n

(
2p+n
2n+p

)
, n, p, p2−2p+2np−4n+3n2

2n+p

)
One gets

r + 2 =
p2 + 2np + 3n2

2n + p
(B 1)
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q0 − r − 2 = q2 − r − 2 =

3n3 − 7n2 − 4np + np2 + 2n2p− p2

2n + p
;

q1 − r − 2 = − (2n + p) ;

q3 − r − 2 =
p3 − 3p2 − 6np + 2np2 + 3n2p− 3n2

2n + p
.

(B 2)

The condition of non-vanishing denominators yields

Den. �= 0⇐⇒ 2n + p �= 0⇐⇒ q1 − r − 2 �= 0. (B 3)

Therefore, under the further assumptions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q1 = −n

(
2p + n

2n + p

)
�= 0⇐⇒

⎧⎪⎨⎪⎩ n �= 0

2p + n �= 0
;

r + 2 =
p2 + 2np + 3n2

2n + p
�= 0⇐⇒ p2 + 2np + 3n2 �= 0,

(B 4)

one finds that the Υ-hypothesis is satisfied at least by μ = 1.

Moreover, we have the following possible degenerate cases (i.e. those in which the

Υ-hypothesis is violated for any value of μ):

I a) n = 0⇒ p �= 0. Then⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q0 − r − 2 = q2 − r − 2 = −p �= 0;

q1 − r − 2 = − (2n + p) �= 0;

q3 − r − 2 = p (p− 3) ,

(B 5)

whence for p �= 3 the Υ-hypothesis is satisfied only by μ = 3, and the case considered is

not a degenerate one.

Therefore the true degenerate case of this class is characterized by

n = 0, p = 3 (B 6)

and corresponds to the 5-d. metric

gAB,DR5power(x
5) = diag

(
1,−1,−1,−

(
x5

x5
0

)3

,±x5

x5
0

)
, (B 7)

special case for p = 3 of the metric

gAB,DR5power(x
5) = diag

(
1,−1,−1,−

(
x5

x5
0

)p

,±
(

x5

x5
0

)p−2
)

, (B 8)

that will be discussed in Subsect.B.2.4.

I b) 2n + p⇐⇒ n = −2p. From Eq.(B 3) it follows

2n + p = −3p �= 0 (B 9)
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and therefore ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q0 − r − 2 = q2 − r − 2 = p (6p + 7) ;

q1 − r − 2 = 3p �= 0;

q3 − r − 2 = −3p

(
p− 1

3

)
.

(B 10)

Then, the Υ-hypothesis is satisfied for p �= −7
6

by μ = 0, 2, and p �= −1
3

by μ = 3.

For p = −7
6

one gets ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q0 − r − 2 = q2 − r − 2 = 0;

q1 − r − 2 = −7

2
;

q3 − r − 2 = −21

4
.

(B 11)

and the Υ-hypothesis is still satisfied by μ = 3.

For p = 1
3

it is ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q0 − r − 2 = q2 − r − 2 = 3;

q1 − r − 2 = 1;

q3 − r − 2 = 0.

(B 12)

and the Υ-hypothesis is still satisfied by μ = 0, 2.

I c) p2+2np+3n2 = 0. The only pair of real solutions of this equation is (n, p) = (0, 0),

that must be discarded because it entails the vanishing of the denominators.

B2.1 Class (II)

q̃II = (0, m, 0, 0, m− 2)

We have

r + 2 = m; (B 13)⎧⎪⎨⎪⎩ q0 − r − 2 = q2 − r − 2 = q3 − r − 2 = −m

q1 − r − 2 = 0.
(B 14)

The Υ-hypothesis is violated ∀m ∈ R and ∀μ ∈ {0, 1, 2, 3}.
In general Class (II) corresponds to the 5-d. metric

gAB,DR5power(x
5) = diag

(
1,−

(
x5

x5
0

)m

,−1,−1,±
(

x5

x5
0

)m−2
)

, (B 15)

we shall consider in Sect.B.2.2.

In particular, for m = 0 one gets

gAB,DR5power(x
5) = diag

(
1,−1,−1,−1,±

(
x5

x5
0

)−2
)

, (B 16)
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whose space-time part is the same as the standard Minkowski space M . This metric is a

special case of

gAB,DR5power(x
5) = diag

(
a,−b,−c,−d,±f

(
x5
))

, (B 17)

whose Killing equations coincide with those of the metric with a = b = c = d = 1, solved

in Subsubsect.5.1.1.

B2.2 Class (III)

q̃III = (n,−n, n, n,−2(1− n))

It is

r + 2 = 2n; (B 18)⎧⎪⎨⎪⎩ q0 − r − 2 = q2 − r − 2 = q3 − r − 2 = −n,

q1 − r − 2 = −3n.
(B 19)

The Υ-hypothesis is satisfied for n �= 0 ∀μ ∈ {0, 1, 2, 3}.
The degenerate case is characterized by n = 0 and corresponds to metric (B 17).

B2.3 Class (IV)

q̃IV = (0, 0, 0, p, p− 2)

One gets

r + 2 = m; (B 20)⎧⎪⎨⎪⎩ q0 − r − 2 = q1 − r − 2 = q3 − r − 2 = −p,

q3 − r − 2 = 0.
(B 21)

The Υ-hypothesis is violated ∀p ∈ R and ∀μ ∈ {0, 1, 2, 3}.
In general this Class corresponds to the 5-d. metric (B 8), whose special case p = 0

is given by metric (B 16).

B2.4 Class (V)

q̃V = (−p,−p,−p, p,− (1 + p))

We have

r + 2 = 1− p; (B 22)⎧⎪⎨⎪⎩ q0 − r − 2 = q1 − r − 2 = q2 − r − 2 = −1,

q3 − r − 2 = 2p− 1.
(B 23)

Therefore the Υ-hypothesis is satisfied for p �= 0, p �= 1 by μ = 0, 1, 2 (and for p �= 0,

p �= 1, p �= 1
2

also by μ = 3).

There are three possible degenerate cases:
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V a) p = 1. One has ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q0 = q1 = q2 = −1;

q3 = 1;

r = −2.

(B 24)

The Υ-hypothesis is not satisfied by any value of μ. The corresponding 5-d. metric is

gAB,DR5power(x
5) =

= diag

((
x5

x5
0

)−1

,−
(

x5

x5
0

)−1

,−
(

x5

x5
0

)−1

,−x5

x5
0

,±
(

x5

x5
0

)−2
)

(B 25)

and is discussed in Sect.B.2.5.

V b) p = 0. It is ⎧⎪⎨⎪⎩ q0 = q1 = q2 = q3 = 0;

r = −1.
(B 26)

and the Υ-hypothesis is violated by any value of μ. The corresponding 5-d. metric is

gAB,DR5power(x
5) = diag

(
1,−1,−1,−1,±

(
x5

x5
0

)−1
)

, (B 27)

special case of the metric (B 17).

V c) p = 1
2
. One gets

r + 2 =
1

2
; (B 28)⎧⎪⎨⎪⎩

q0 = q1 = q2 = −1

2
,

q3 =
1

2
.

(B 29)

Therefore the Υ-hypothesis is satisfied by μ = 0, 1, 2 .

B2.5 Class (VI)

q̃V I = (q, 0, 0, 0, q − 2)

One has

r + 2 = q; (B 30)⎧⎪⎨⎪⎩ q0 − r − 2 = 0,

q1 − r − 2 = q2 − r − 2 = q3 − r − 2 = −q.
(B 31)

The Υ-hypothesis is not satisfied ∀q ∈ R and ∀μ ∈ {0, 1, 2, 3}.
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The corresponding 5-d. metric reads

gAB,DR5power(x
5) = diag

((
x5

x5
0

)q

,−1,−1,−1,±
(

x5

x5
0

)q−2
)

(B 32)

(with special case q = 0 given by (B 16)), and is discussed in Subsect.B.2.1.

B2.6 Class (VII)

q̃V II = (q,−q,−q,−q,−q,−2)

It is

r + 2 = −q; (B 33)⎧⎪⎨⎪⎩ q0 − r − 2 = 2q,

q1 − r − 2 = q2 − r − 2 = q3 − r − 2 = 0.
(B 34)

The Υ-hypothesis is satisfied for q �= 0 by μ = 0.

The degenerate case q = 0 corresponds to the 5-d. metric (B 16).

B2.7 Class (VIII)

q̃V III = (0, 0, 0, 0, r ∈ R)

One has

q0 − r − 2 = q1 − r − 2 = q3 − r − 2 = q3 − r − 2 = −r − 2. (B 35)

The Υ-hypothesis is violated ∀r ∈ R and ∀μ ∈ {0, 1, 2, 3}.
The Class (VIII) corresponds to the 5-d. metric

gAB,DR5power(x
5) = diag

(
1,−1,−1,−1,±

(
x5

x5
0

)−r
)

, (B 36)

that generalizes metric (B 16) and is a special case of the metric (B 17).

B2.8 Class (IX)

q̃IX = (0, 0, n, 0, n− 2)

We have

r + 2 = n; (B 37)⎧⎪⎨⎪⎩ q0 − r − 2 = q1 − r − 2 = q3 − r − 2 = −n,

q2 − r − 2 = 0.
(B 38)

The Υ-hypothesis is not satisfied ∀n ∈ R and ∀μ ∈ {0, 1, 2, 3}.
The corresponding 5-d. metric is

gAB,DR5power(x
5) = diag

(
1,−1,−

(
x5

x5
0

)n

,−1,±
(

x5

x5
0

)n−2
)

, (B 39)

and is discussed in Subsect.B.2.3 (whereas n = 0 gives metric (B 16)).
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B2.9 Class (X)

q̃X =
(
q,−pq+np+nq

n+p+q
, n, p, (n+p+q)(n+p+q−2)−(pq+np+nq)

n+p+q

)
One gets

r + 2 =
(n + p + q)2 − (pq + np + nq)

n + p + q
; (B 40)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q0 − r − 2 = −p2 + n2 + np

n + p + q
;

q1 − r − 2 = − (n + p + q) ;

q2 − r − 2 = −q2 + p2 + pq

n + p + q
;

q3 − r − 2 = −q2 + n2 + nq

n + p + q
.

(B 41)

The condition of non-vanishing denominators yields

Den. �= 0⇐⇒ n + p + q �= 0⇐⇒ q1 − r − 2 �= 0. (B 42)

Therefore, under the further assumptions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q1 = −pq + np + nq

n + p + q
�= 0⇐⇒ pq + np + nq �= 0;

r + 2 =
(n + p + q)2 − (pq + np + nq)

n + p + q
�= 0⇐⇒

⇐⇒ p2 + n2 + q2 + pq + np + nq �= 0,

(B 43)

one finds that the Υ-hypothesis is satisfied at least by μ = 1.

Then, we have the following possible degenerate cases:

X a) pq + np + nq = 0. Therefore

r + 2 = n + p + q �= 0; (B 44)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q0 − r − 2 = −p2 + n2 + np

n + p + q
;

q1 − r − 2 = − (n + p + q) �= 0;

q2 − r − 2 = −q2 + p2 + pq

n + p + q
;

q3 − r − 2 = −q2 + n2 + nq

n + p + q
.

(B 45)

One has to consider the following subcases:

X a.1) q = 0. Then

np = 0, n + p �= 0⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X a.1.1) n = 0, p �= 0

or

X a.1.2) n �= 0, p = 0.

(B 46)
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X a.1.1) One gets

r = p− 2; (B 47)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q0 − r − 2 = −p �= 0;

q1 − r − 2 = p �= 0;

q2 − r − 2 = −p �= 0;

q3 − r − 2 = 0.

(B 48)

Therefore the Υ-hypothesis is satisfied by no value of μ. The corresponding metric is

given by Eq.(B 8) (Class (IV)).

X a.1.2) One finds

r = n− 2; (B 49)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q0 − r − 2 = q1 − r − 2 = −n �= 0;

q2 − r − 2 = 0;

q3 − r − 2 = −n �= 0.

(B 50)

Again, the Υ-hypothesis is not satisfied by any value of μ. The corresponding 5-d. metric

is given by Eq.(B 39) (Class (IX)).

X a.2) n = 0. Then

pq = 0, p + q �= 0⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X a.2.1) p = 0, q �= 0

or

X a.2.2) p �= 0, q = 0.

(B 51)

X a.2.1) One gets

r = q − 2; (B 52)⎧⎪⎨⎪⎩ q0 − r − 2 = 0;

q1 − r − 2 = q2 − r − 2 = q3 − r − 2 = −q �= 0.
(B 53)

Therefore the Υ-hypothesis is satisfied by no value of μ. The corresponding metric

coincides with that of Class (VI), Eq.(B 32).

The case X a.2.2) coincides with the case X a.1.1).
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X a.3) p = 0. It is

nq = 0, n + q �= 0⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X a.3.1) n = 0, q �= 0

or

X a.3.2) n �= 0, q = 0,

(B 54)

and therefore the subcases X a.3.1) and X a.3.2) coincide with subcases X a.2.1) and X

a.1.2), respectively.

X a.4) q0 − r − 2 = 0 ⇔ p2 + n2 + np = 0. The only possible pair of real solutions

of this equation is (p, n) = (0, 0). From the condition of non-vanishing denominators it

then follows q �= 0. Therefore such a case coincides with X a.2.1).

X a.5) q1 − r− 2 = 0⇔ n + p + q = 0. This condition expresses the vanishing of the

denominators, and therefore this case is impossible.

X a.6) q2 − r − 2 = 0⇔ q2 + p2 + pq = 0. The only real solution of this equation is

(q, p) = (0, 0). The condition of non-vanishing denominators entails n �= 0, and then this

case coincides with subcase X a.1.2).

X a.7) q3 − r − 2 = 0 ⇔ q2 + n2 + nq = 0. The only real solution is (q, n) = (0, 0) .

The condition of non-vanishing denominators entails p �= 0. Therefore this case coincides

with subcase X a.1.1).

X b) p2 + n2 + q2 + pq + np + nq = 0. The only possible solution of such equation is

(p, n, q) = (0, 0, 0), which contradicts the non-vanishing condition of denominators. This

case is impossible, too.

B2.10 Class (XI)

q̃XI =
(
q,−n(2q+n)

2n+q
, n, n, 3n2−4n+2nq−2q+q2

2n+q

)
One gets

r + 2 =
3n2 + 2nq + q2

2n + q
; (B 55)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q0 − r − 2 = − 3n2

2n + q
;

q1 − r − 2 = − (2n + q) ;

q2 − r − 2 = q3 − r − 2 = −q2 + n2 + nq

2n + q
.

(B 56)

The condition of non-vanishing denominators yields

Den. �= 0⇐⇒ 2n + q �= 0⇐⇒ q1 − r − 2 �= 0. (B 57)
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Then, by assuming further⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q1 = −n (2q + n)

2n + q
�= 0⇐⇒

⎧⎪⎨⎪⎩ n �= 0;

2q + n �= 0,
;

r + 2 =
3n2 + 2nq + q2

2n + q
�= 0⇐⇒ 3n2 + 2nq + q2 �= 0

, (B 58)

one gets that the Υ-hypothesis is satisfied at least by μ = 1.

We have also the following possible degenerate cases:

XI a) n = 0⇒ q �= 0. Then

r = q − 2; (B 59)⎧⎪⎨⎪⎩ q0 − r − 2 = 0;

q1 − r − 2 = q2 − r − 2 = q3 − r − 2 = −q �= 0.
(B 60)

Therefore the Υ-hypothesis is satisfied by no value of μ. The corresponding metric

coincides with that of Class (VI).

XI b) 2q + n = 0 (which, together with 2n + q �= 0, entails q �= 0). Then

r = −3q − 2; (B 61)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q0 − r − 2 = 4q �= 0;

q1 − r − 2 = 3q �= 0;

q2 − r − 2 = q3 − r − 2 = q �= 0.

(B 62)

Therefore the Υ-hypothesis is satisfied by μ = 0, 2, 3.

XI c) 3n2+2nq+q2 = 0. The only possible solution of such equation is (n, q) = (0, 0),

contradicting the non-vanishing condition of denominators, whence the impossibility of

this case.

B2.11 Class (XII)

q̃XII =
(
q, n, n,−n(2q+n)

2n+q
, p2+pq−2p+np−2n+nq+n2−2q+q2

n+p+q

)
We have

r + 2 =
p2 + n2 + q2 + pq + np + nq

n + p + q
; (B 63)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q0 − r − 2 = −p2 + n2 + np

n + p + q
;

q1 − r − 2 = q2 − r − 2 = −p2 + q2 + pq

n + p + q
;

q3 − r − 2 =

= −3n3 + q3 + 6n2q + 5nq2 + 2np2 + 3pn2 + q2p + p2q + 5npq

(n + p + q) (2n + q)
.

(B 64)

The condition of non-zero denominators yields

Den. �= 0⇐⇒

⎧⎪⎨⎪⎩ 2n + q �= 0;

n + p + q �= 0.
(B 65)

Let us put

n + p + q = a ∈ R0

2n + q = b ∈ R0

⎫⎪⎬⎪⎭⇒ p = a− q + b

2
. (B 66)

Considering e.g. μ = 0, one has

q0 − r − 2 = −p2 + n2 + np

n + p + q
=

=
1

4a

[
3 (q − a)2 + (a− b)2] q �= aor a �= b︸ ︷︷ ︸

≷ 0, sgn (a) =

⎧⎪⎨⎪⎩ 1

−1
. (B 67)

By assuming q �= a and/or a �= b, the vanishing of the denominators entails q0−r−2 �= 0.

Then, under the further assumptions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

q0 = q �= 0;

r + 2 =
p2 + n2 + q2 + pq + np + nq

n + p + q
�= 0⇐⇒

⇐⇒ p2 + n2 + q2 + pq + np + nq �= 0,

(B 68)

one gets that the Υ-hypothesis is satisfied at least by μ = 0.

The possible degenerate cases are:

XII a) q = 0⇒

⎧⎪⎨⎪⎩ n �= 0

n + p �= 0
. Then

r + 2 =
p2 + n2 + np

n + p
; (B 69)
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q0 − r − 2 = −p2 + n2 + np

n + p
;

q1 − r − 2 = q2 − r − 2 = − p2

n + p
;

q3 − r − 2 = −3n2 + 2p2 + 3pn

2 (n + p)
.

(B 70)

It is r+2 �= 0 and q0−r−2 �= 0 because the only possible solution of p2+n2+np = 0 is the

pair (p, n) = (0, 0), incompatible with the non-vanishing of the denominators. Therefore

this case is impossible.

We have the following subcases:

XII a.1) p = 0. Then

r = n− 2; (B 71)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q0 − r − 2 = −n �= 0;

q1 − r − 2 = q2 − r − 2 = 0;

q3 − r − 2 = −3

2
n �= 0.

(B 72)

Therefore the Υ-hypothesis is satisfied by μ = 3.

XII a.2) 3n2 + 2p2 + 3pn = 0. This equation admits as only real solution the pair

(p, n) = (0, 0), incompatible with the non-vanishing of the denominators. Therefore, this

case is impossible.

XII b) p2 + n2 + q2 + pq + np + nq = 0. This equation has the only real solution

(p, n, q) = (0, 0, 0), contradicting the non-vanishing of the denominators, and then this

case has to be discarded.

XII c) q = a = b⇐⇒ n = p = 0. We have

r = a− 2; (B 73)⎧⎪⎨⎪⎩ q0 − r − 2 = 0;

q1 − r − 2 = q2 − r − 2 = q3 − r − 2 = −a �= 0.
(B 74)

Consequently the Υ-hypothesis is satisfied by no value of μ. The metric obtained is the

same of Class (VI).

B3 Solution of the 5-d. Killing Equations

for Totally Violated Υ-Hypothesis

The analysis of the previous Subsection has shown that, in the framework of the Power

Ansatz, there exist five cases (actually only three of them are independent) in which the

hypothesis Υ of functional independence is violated ∀μ = 0, 1, 2, 3. In the following, we

shall explicitly solve the Killing equations in such cases.
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B3.1 Case 1

In the framework of the Power Ansatz, the first case we shall consider in which the Υ-

hypothesis is not satisfied by any value of μ corresponds to the 5-d. metric belonging to

the VI class (p ∈ R)

gAB,DR5,1(x
5) = diag

((
x5

x5
0

)p

,−1,−1,−1,±
(

x5

x5
0

)p−2
)

. (B 75)

For p = 0 one gets the metric

gAB,DR5(x
5) = diag

(
1,−1,−1,−1,±

(
x5

x5
0

)−2
)

(B 76)

that is a special case of the metric

gAB,DR5(x
5) = diag

(
a,−b,−c,−d,±f

(
x5
))

, (B 77)

whose Killing equations (coincident with those relevant to the metric with a = b = c =

d = 1) have been solved in Subsubsect.5.1.1. Therefore, one can assume p ∈ R0.

The Killing system (83)-(94) in this case reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±ξ0,0(x
A) +

p

2

x5

(x5
0)

2 ξ5(x
A) = 0;

ξ0,1(x
A) + ξ1,0(x

A) = 0;

ξ0,2(x
A) + ξ2,0(x

A) = 0;

ξ0,3(x
A) + ξ3,0(x

A) = 0;

ξ0,5(x
A)x5 − pξ0(x

A) + ξ5,0(x
A)x5 = 0;

ξ1,1(x
A) = 0;

ξ1,2(x
A) + ξ2,1(x

A) = 0;

ξ1,3(x
A) + ξ3,1(x

A) = 0;

ξ1,5(x
A) + ξ5,1(x

A) = 0;

ξ2,2(x
A) = 0;

ξ2,3(x
A) + ξ3,2(x

A) = 0;

ξ2,5(x
A) + ξ5,2(x

A) = 0;

ξ3,3(x
A) = 0;

ξ3,5(x
A) + ξ5,3(x

A) = 0;

−2ξ5,5(x
A)x5 + (p− 2) ξ5(x

A) = 0.

(B 78)
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Its solution depends on the signature (timelike or spacelike) of x5. One gets, for the

covariant Killing 5-vector:

ξ0(x
0, x5; p) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

” + ” :

(x5
0)
−1

[
A cos

(
p

2

x0

x5
0

)
− B sin

(
p

2

x0

x5
0

)]
(x5)

p
2 + α(x5)p;

”− ” :

(x5
0)
−1

[
C cosh

(
p

2

x0

x5
0

)
−D sinh

(
p

2

x0

x5
0

)]
(x5)

p
2 + α(x5)p;

(B 79)

ξ1(x
2, x3) = Θ3x

2 + Θ2x
3 − T1; (B 80)

ξ2(x
1, x3) = −Θ3x

1 + Θ1x
3 − T2; (B 81)

ξ3(x
1, x2) = −Θ2x

1 + Θ1x
2 − T3; (B 82)

ξ5(x
0, x5; p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

” + ” :[
A cos

(
p

2

x0

x5
0

)
+ B sin

(
p

2

x0

x5
0

)]
(x5)

p
2
−1;

”− ” :[
C cosh

(
p

2

x0

x5
0

)
+ D sinh

(
p

2

x0

x5
0

)]
(x5)

p
2
−1,

(B 83)

with Θi,Ti (i = 1, 2, 3), A, B, C, D, α ∈ R. Since [x5
0] = l, the dimensions of the

transformation parameters are

[A] = [B] = [C] = [D] = l−( p
2
−1), [α] = l−p, [Ti] = l , [ Θi] = l0 ∀i. (B 84)

The 3-d Killing group (of the Euclidean sections at dx5 = 0, dx0 = 0) is trivially the

group of rototranslations of the Euclidean space E3 with metric δij = diag(−1,−1,−1)

((i, j) ∈ {1, 2, 3}2):
SO(3)STD. ⊗s Tr.(3)STD.. (B 85)

B3.2 Case 2

The 5-d. metric for this case is

gAB,DR5,2(x
5) = diag

(
1,−

(
x5

x5
0

)p

,−1,−1,±
(

x5

x5
0

)p−2
)

. (B 86)
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The corresponding Killing equations are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ0,0(x
A) = 0;

ξ0,1(x
A) + ξ1,0(x

A) = 0;

ξ0,2(x
A) + ξ2,0(x

A) = 0;

ξ0,3(x
A) + ξ3,0(x

A) = 0;

ξ0,5(x
A) + ξ5,0(x

A) = 0;

∓ξ1,1(x
A) +

p

2

x5

(x5
0)

2 ξ5(x
A) = 0;

ξ1,2(x
A) + ξ2,1(x

A) = 0;

ξ1,3(x
A) + ξ3,1(x

A) = 0;

ξ1,5(x
A)x5 − pξ1(x

A) + ξ5,1(x
A)x5 = 0;

ξ2,2(x
A) = 0;

ξ2,3(x
A) + ξ3,2(x

A) = 0;

ξ2,5(x
A) + ξ5,2(x

A) = 0;

ξ3,3(x
A) = 0;

ξ3,5(x
A) + ξ5,3(x

A) = 0;

−2ξ5,5(x
A)x5 + (p− 2) ξ5(x

A) = 0.

(B 87)

having as solution the covariant Killing vector

ξ0(x
2, x3) = ζ2x

2 + ζ3x
3 + T0; (B 88)

ξ1(x
1, x5; p) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

” + ” :

(x5
0)
−1

[
A cosh

(
p

2

x1

x5
0

)
+ B sinh

(
p

2

x1

x5
0

)]
(x5)

p
2 + α(x5)p;

”− ” :

(x5
0)
−1

[
C cos

(
p

2

x1

x5
0

)
−D sin

(
p

2

x1

x5
0

)]
(x5)

p
2 + α(x5)p;

(B 89)

ξ2(x
0, x3) = −ζ2x

1 + Θ1x
3 − T2; (B 90)

ξ3(x
0, x2) = −ζ3x

1 −Θ1x
2 − T3; (B 91)
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ξ5(x
1, x5; p) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

” + ” :[
A sinh

(
p

2

x1

x5
0

)
+ B cosh

(
p

2

x1

x5
0

)]
(x5)

p
2
−1;

”− ” :[
C sin

(
p

2

x1

x5
0

)
+ D cos

(
p

2

x1

x5
0

)]
(x5)

p
2
−1,

(B 92)

with ζk(k = 2, 3), Θ1,Tν (ν = 0, 2, 3), A, B, C, D, α ∈ R. The dimensions of the

transformation parameters are

[A] = [B] = [C] = [D] = l−( p
2
−1), [α] = l−p, [Tν ] = l , [ ζi] = [Θ1] = l0 . (B 93)

The 3-d Killing group (of the sections at dx5 = 0, dx1 = 0) is trivially the group

of rototranslations of the pseudoeuclidean space E ′
3 with metric gμν = diag(1,−1,−1)

((μ, ν) ∈ {0, 2, 3}2):
SO(2, 1)STD. ⊗s Tr.(2, 1)STD.. (B 94)

B3.3 Case 3

In this case the 5-d. metric reads

gAB,DR5,3(x
5) = diag

(
1, ,−1,−

(
x5

x5
0

)p

,−1,±
(

x5

x5
0

)p−2
)

(B 95)

which is the same as Case 2, apart from an exchange of the space axes x and y. The Killing

vector is therefore obtained from the previous solution (B 88)-(B 92) by the exchange

1↔ 2.

B3.4 Case 4

The 5-d. metric of this case

gAB,DR5,4(x
5) = diag

(
1,−1,−1,−

(
x5

x5
0

)p

,±
(

x5

x5
0

)p−2
)

(B 96)

amounts again to an exchange of space axes (1 ↔ 3) with respect to case 2. Accord-

ingly, the solution for the Killing vector is obtained by such an exchange in the relevant

equations.

B3.5 Case 5

The 5-d. metric of this case is given by

gAB,DR5,5(x
5) =

= diag

((
x5

x5
0

)−1

,−
(

x5

x5
0

)−1

,−
(

x5

x5
0

)−1

,−x5

x5
0

,±
(

x5

x5
0

)−2
)

, (B 97)
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to which corresponds the Killing system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ξ0,0(x
A)x5

0 ∓ ξ5(x
A) = 0;

ξ0,1(x
A) + ξ1,0(x

A) = 0;

ξ0,2(x
A) + ξ2,0(x

A) = 0;

ξ0,3(x
A) + ξ3,0(x

A) = 0;

ξ0,5(x
A)x5 + ξ0(x

A) + ξ5,0(x
A)x5 = 0;

2ξ1,1(x
A)x5

0 ± ξ5(x
A) = 0;

ξ1,2(x
A) + ξ2,1(x

A) = 0;

ξ1,3(x
A) + ξ3,1(x

A) = 0;

ξ1,5(x
A)x5 + ξ1(x

A) + ξ5,1(x
A)x5 = 0;

ξ2,2(x
A)x5

0 ± ξ5(x
A) = 0;

ξ2,3(x
A) + ξ3,2(x

A) = 0;

ξ2,5(x
A)x5 + ξ2(x

A) + ξ5,2(x
A)x5 = 0;

∓2ξ3,3(x
A) (x5

0)
3
+ (x5)

2
ξ5(x

A) = 0;

ξ3,5(x
A)x5 − ξ3(x

A) + ξ5,3(x
A)x5 = 0;

ξ5,5(x
A)x5 + ξ5(x

A) = 0.

(B 98)

Solving this system yields the covariant Killing vector

ξ0(x
1, x2, x5) = η1

x1

x5
+ η2

x2

x5
+ τ0

1

x5
; (B 99)

ξ1(x
0, x2, x5) = −η1

x0

x5
+ Θ3

x2

x5
− τ1

1

x5
; (B 100)

ξ2(x
0, x1, x5) = −η2

x0

x5
−Θ3

x1

x5
− τ2

1

x5
; (B 101)

ξ3 = 0; (B 102)

ξ5 = 0 (B 103)

with ηk(k = 1, 2), Θ3, τν (ν = 0, 1, 2) ∈ R. The dimensions of the transformation

parameters are

[τν ] = l2 , [ ηk] = [Θ3] = l . (B 104)

In this case the Killing group is the group of rototranslations of the pseudoeuclidean

space M3 with metric gμν = diag
(

x5

x5
0

)−1

(1,−1,−1) ((μ, ν) ∈ {0, 1, 2}2):

SO(2, 1)STD.M3 ⊗s Tr.(2, 1)STD.M3. (B 105)
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In all five cases discussed, the 5-d. contravariant Killing vectors ξA(x, x5) are obtained

by means of the contravariant deformed metric tensor gAB
DR5(x

5) as

ξA(x, x5) = gAB
DR55(x

5)ξB(x, x5). (B 106)

For instance, in case 4, the contravariant metric tensor is

gAB
DR5,4(x

5) = diag

(
1,−1,−1,−

(
x5

x5
0

)−p

,±
(

x5

x5
0

)−p+2
)

(B 107)

and therefore the contravariant components of the Killing vector read

ξ0(x1, x2) = ζ1x
1 + ζ2x

2 + T0; (B 108)

ξ1(x0, x2) = ζ1x
0 −Θ3x

2 + T1; (B 109)

ξ2(x0, x1) = ζ2x
0 + Θ3x

1 + T2; (B 110)

ξ3(x3, x5; p) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

” + ” :

− (x5
0)

p−1

[
A cosh

(
p

2

x3

x5
0

)
+ B sinh

(
p

2

x3

x5
0

)]
(x5)

− p
2 + α (x5

0)
p
;

”− ” :

− (x5
0)

p−1

[
C cos

(
p

2

x3

x5
0

)
−D sin

(
p

2

x3

x5
0

)]
(x5)

− p
2 + α (x5

0)
p
;

; (B 111)

ξ5(x3, x5; p) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

” + ” :

(x5
0)

p−2

[
A sinh

(
p

2

x3

x5
0

)
+ B cosh

(
p

2

x3

x5
0

)]
(x5)

− p
2
+1

;

”− ” :

− (x5
0)

p−2

[
C sin

(
p

2

x3

x5
0

)
+ D cos

(
p

2

x3

x5
0

)]
(x5)

− p
2
+1

.

. (B 112)

C Gravitational Killing Symmetries

for Special Forms of b21(x
5) and b22(x

5)

In this Appendix, we shall investigate the integrability of the Killing system for the

gravitational interaction in different cases by assuming special forms for the spatial metric

coefficients b2
1(x

5) and b2
2(x

5). For each case, we will consider the two energy ranges

0 < x5 � x5
0 (subcase a)) and x5 > x5

0 (subcase b)).
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C1 Form I

The phenomenological metric 5-d. is assumed to be

gAB,DR5,grav.(x
5) =

= diag

(
1 + Θ(x5 − x5

0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]
,−c1,−c2,

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,±f(x5)

)
,

c1, c2 ∈ R+
0 , (in gen.: c1 �= 1, c2 �= 1, c1 �= c2).

(C 1)

C1.1 I a)

Metric (C 1) becomes:

gAB,DR5(x
5) = diag

(
1,−c1,−c2,−1,±f(x5)

)
= diag

(
gμν,M4

(x5),±f(x5)
)
, (C 2)

where M4 is a standard 4-d. Minkowskian space with the following coordinate rescaling:

x1 −→ √c1x
1 ⇒

(in gen.)
�

dx1 −→ √c1dx1; (C 3.1)

x2 −→ √c2x
2 ⇒

(in gen.)
�

dx2 −→ √c2dx2. (C 3.2)

This case is therefore the same of the e.m. and weak interactions in the energy range

x5 � x5
0 (Subsubsect.5.1.1) and of the strong interaction in the range 0 < x5 � x5

0

(Subsubsect.5.2.1). Thus, the Υ-hypothesis of functional independence is violated for

any μ ∈ {0, 1, 2, 3}, and the contravariant Killing 5-vector ξA(x, x5) is given by Eqs.(139)-

(143).

The Killing group of the sections at dx5 = 0 of �5 is therefore the standard Poincaré

group, suitably rescaled:

[P (1, 3)STD. = SO(1, 3)STD. ⊗s Tr.(1, 3)STD.]|x1−→√c1x1,x2−→√c2x2 . (C 4)

C1.2 I b)

The metric takes the form

gAB,DR5(x
5) =

= diag

(
1

4

(
1 +

x5

x5
0,grav.

)2

,−c1,−c2,−
1

4

(
1 +

x5

x5
0,grav.

)2

,±f(x5)

)
(C 5)
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and from (124)-(125) it follows

A0(x
5) = −A3(x

5) =

= 1
8

(
1 +

x5

x5
0

)
x5

(x5
0)

2 (f(x5))
− 1

2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
;

A1(x
5) = A2(x

5) = 0;

(C 6)

B0(x
5) = B3(x

5) =
1

2

(
1 +

x5
0

x5

)(
f(x5)

) 1
2 ; (C 7.1)

1
√

c1
B1(x

5) =
1
√

c2
B2(x

5) =
(
f(x5)

) 1
2 , (C 7.2)

whence

±A0(x
5)

B0(x5)
=
∓A3(x

5)

B3(x5)
= ±1

4

1

f(x5)

x5

(x5
0)

2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
. (C 8)

Therefore, the Υ-hypothesis is satisfied only for μ = 0, 3 under condition

1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)
�= c

f(x5)

x5
, c ∈ R. (C 9)

Then, on the basis of the results of Subsect.4.3, the components of the contravariant

Killing vector ξA(x, x5) in this case are given by Eqs. (118)-(122), in which (some of) the
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real parameters are constrained by the following system (cfr. Eq. (123)):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(01)
1

4

(
1 +

x5

x5
0,grav.

)2

[d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)] +

+c1 [h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)] = 0;

(02)
1

4

(
1 +

x5

x5
0,grav.

)2

(d8x
1x3 + d7x

1 + d4x
3 + d3) +

+c2 [l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)] = 0;

(03)
1

4

(
1 +

x5

x5
0,grav.

)2

(d8x
1x2 + d6x

1 + d4x
2 + d2)+

+
1

4

(
1 +

x5

x5
0,grav.

)2

[m8x
1x2 + m7x

1 + m6x
2 + (m5 + g2)] = 0;

(12) c1 (h2x
0x3 + h1x

0 + h4x
3 + h3) + c2 (l2x

0x3 + l1x
0 + l4x

3 + l3) = 0;

(13) c1 (h2x
0x2 + h8x

0 + h4x
2 + h6) +

+
1

4

(
1 +

x5

x5
0,grav.

)2

(m8x
0x2 + m7x

0 + m4x
2 + m3) = 0;

(23) c2 (l2x
0x1 + l6x

0 + l4x
1 + l8)+

+
1

4

(
1 +

x5

x5
0,grav.

)2

(m8x
0x1 + m6x

0 + m4x
1 + m2) = 0.

(C 10)

Solving system (C 9) one finally gets for ξA(x, x5):

ξ0(x3) = F̃0(x
3) = d2x

3 + (a1 + d1 + K0); (C 11)

ξ1(x2) = −F̃1(x
2) =

c2

c1

l3x
2 − (K1 + h5 + e1) ; (C 12)

ξ2(x1) = −F̃2(x
1) = −l3x

1 − (l7 + K2 + e3); (C 13)

ξ3(x0) = −F̃3(x
0) = d2x

0 − (m1 + g1 + c); (C 14)

ξ5 = 0. (C 15)

It follows from the above equations that the 5-d. Killing group in the range considered

is (
SO(2)

STD.,Π(x1,x2−→
√

c2
c1

x2)
⊗Bx3,STD.

)
⊗s Tr.(1, 3)STD. (C 16)
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where SO(2)
STD.,Π(x1,x2−→

√
c2
c1

x2)
= SO(2)STD.,Π(x1−→√c1x1,x2−→√c2x2) is the one-parameter

group (generated by S3
SR|x2−→

√
c2
c1

x2) of the 2-d. rotations in the plane Π(x1, x2) charac-

terized by the scale transformation (C 3.1)-(C 3.2), Bx3,STD. is the usual one-parameter

group (generated by K3
SR) of the standard Lorentzian boosts along x̂3 and Tr.(1, 3)STD.

is the usual space-time translation group.

Notice that, by introducing the right distribution Θ̂R(x5
0 − x5), putting

B1

c1
≡ ζ1,

B2

c2
≡ ζ2, B3 ≡ ζ3,

Θ1

c2
≡ θ1,

Θ2

c1
≡ θ2,

Θ3

c2
≡ θ3,

Ξ0 ≡ ζ5,
Ξ1

c1

≡ Ξ1′,
Ξ2

c2

≡ Ξ2′,

T 1

c1
≡ T 1′,

T 2

c2
≡ T 2′,

(C 17)

and making the identifications

(a1 + d1 + K0) = T 0;

− (K1 + h5 + e1) =
1

c1
T 1;

−(l7 + K2 + e3) =
1

c2

T 2;

−(m1 + g1 + c) = T 3;

l3 =
1

c2

Θ3;

d2 = −B3,

(C 18)

it is possible to express the contravariant 5-vector ξA(x, x5) for the gravitational interac-

tion in case I) in the following form, valid in the whole energy range (x5 ∈ R+
0 ):

ξ0(x1, x2, x3, x5) = Θ̂R(x5
0 − x5)

[
−c1ζ

1x1 − c2ζ
2x2 + ζ5F (x5)

]
− ζ3x3 + T 0; (C 19)

ξ1(x0, x2, x3, x5) = Θ̂R(x5
0 − x5)

[
−ζ1x0 − θ2x3 − Ξ1F (x5)

]
+

c2

c1
θ3x2 + T 1; (C 20)

ξ2(x0, x1, x3, x5) = Θ̂R(x5
0 − x5)

[
−ζ2x0 + θ1x3 − Ξ2F (x5)

]
− θ3x1 + T 2; (C 21)

ξ3(x0, x1, x2, x5) = Θ̂R(x5
0 − x5)

[
c1θ

2x1 − c2θ
1x2 − Ξ3F (x5)

]
− ζ3x0 + T 3; (C 22)

ξ5(x, x5) =

= Θ̂R(x5
0 − x5)

{
∓
(
f(x5)

)− 1
2 [ζ5x0 + c1Ξ

1x1 + c2Ξ
2x2 + Ξ3x3 − T 5]

}
. (C 23)



162 Electronic Journal of Theoretical Physics 6, No. 20 (2009) 59–192

C2 Form II

gAB,DR5,grav.(x
5) =

= diag

(
1 + Θ(x5 − x5

0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]
,

−
{
c1 + Θ(x5 − x5

0,grav.)
[
β2

1(x
5)− c1

]}
,−

{
c2 + Θ(x5 − x5

0,grav.)
[
β2

2(x
5)− c2

]}
,

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,±f(x5)

)
; (C 24)

c1, c2 ∈ R+
0 , (in gen.: c1 �= 1, c2 �= 1, c1 �= c2),

where the functions β2
1(x

5) and β2
2(x

5) have the properties:

β2
1(x

5), β2
2(x

5) ∈ R+
0 , ∀x5 ∈ ([x5

0,∞)) ⊂ R+
0 ;

β2
1(x

5) �= β2
2(x

5);

β2
1(x

5
0) = c1, β

2
2(x

5
0) = c2;

β2
1(x

5) �= 1

4

(
1 +

x5

x5
0,grav.

)2

, β2
2(x

5) �= 1

4

(
1 +

x5

x5
0,grav.

)2

.

(C 25)

C2.1 II a)

In the energy range 0 < x5 � x5
0, the 5-d. metric has the same form (C 2) of case I a),

and therefore the same results of that case hold true. In particular the Υ-hypothesis is

not satisfied by any value of μ, and the contravariant vector ξA(x, x5) is still given by

Eqs.(139)-(143).

C2.2 II b)

In this case the 5-d. gravitational metric reads

gAB,DR5(x
5) =

= diag

(
1

4

(
1 +

x5

x5
0,grav.

)2

,−β2
1(x

5),−β2
2(x

5),−1

4

(
1 +

x5

x5
0,grav.

)2

,±f(x5)

)
(C 26)

The fake vectors (124), (125) become (ESC off):

A0(x
5) = −A3(x

5) = =
1

8

(
1 +

x5

x5
0

)
x5

(x5
0)

2

(
f(x5)

)− 1
2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
;

(C 27)

Ai(x
5) ≡ βi(x

5)(f(x5))−1/2·

·
[
−
(
β ′i(x

5)
)2

+ βi(x
5)β ′′i (x5)− 1

2
βi(x

5)β ′i(x
5)f ′(x5)(f(x5))−1

]
, i = 1, 2; (C 28)
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B0(x
5) = B3(x

5) =
1

2

(
1 +

x5
0

x5

)(
f(x5)

) 1
2 ; (C 29)

Bi(x
5) ≡ βi(x

5)(f(x5))1/2, i = 1, 2, (C 30)

whence

±A0(x
5)

B0(x5)
=
∓A3(x

5)

B3(x5)
= ±1

4

1

f(x5)

x5

(x5
0)

2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
(C 31)

±Ai(x
5)

Bi(x5)
=

= ±(f(x5))−1

[
−
(
β ′i(x

5)
)2

+ βi(x
5)β ′′i (x5)− 1

2
βi(x

5)β ′i(x
5)f ′(x5)(f(x5))−1

]
,

i = 1, 2. (C 32)

Then, the Υ-hypothesis is satisfied for μ = 0, 3 under constraint (C 9), and for μ = 1

and/or 2 under the conditions

[
− (β ′i(x

5))
2
+ βi(x

5)β ′′i (x5)− 1
2
βi(x

5)β ′i(x
5)f ′(x5)(f(x5))−1

]
�= 0;

(f(x5))−1
[
− (β ′i(x

5))
2
+ βi(x

5)β ′′i (x5)− 1
2
βi(x

5)β ′i(x
5)f ′(x5)(f(x5))−1

]
�= c,

c ∈ R0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⇔

⇔

⎧⎪⎨⎪⎩− (β ′i(x
5))

2
+ βi(x

5)β ′′i (x5)− 1
2
βi(x

5)β ′i(x
5)f ′(x5)(f(x5))−1 �= cf(x5),

c ∈ R, i = 1 and/or 2.

(C 33)

By exploiting the results of Subsect.4.3, the components of the contravariant Killing

vector ξA(x, x5) corresponding to form II) of the 5-d. gravitational metric over threshold

are given by Eqs. (118)-(122), in which (some of) the real parameters are constrained by
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the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(01)
1

4

(
1 +

x5

x5
0,grav.

)2

[d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)] +

+β2
1(x

5) [h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)] = 0;

(02)
1

4

(
1 +

x5

x5
0,grav.

)2

(d8x
1x3 + d7x

1 + d4x
3 + d3)+

+β2
2(x

5) [l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)] = 0;

(03)
1

4

(
1 +

x5

x5
0,grav.

)2

[d8x
1x2 + d6x

1 + d4x
2 + d2+

+m8x
1x2 + m7x

1 + m6x
2 + (m5 + g2)] = 0;

(12) β2
1(x

5) (h2x
0x3 + h1x

0 + h4x
3 + h3)+

+β2
2(x

5) (l2x
0x3 + l1x

0 + l4x
3 + l3) = 0;

(13)
1

4

(
1 +

x5

x5
0,grav.

)2

(m8x
0x2 + m7x

0 + m4x
2 + m3) +

+β2
1(x

5) (h2x
0x2 + h8x

0 + h4x
2 + h6) = 0;

(23)
1

4

(
1 +

x5

x5
0,grav.

)2

(m8x
0x1 + m6x

0 + m4x
1 + m2) +

+β2
2(x

5) (l2x
0x1 + l6x

0 + l4x
1 + l8) = 0.

(C 34)

Solving system (C 34) yields for ξA(x, x5) in this case

ξ0(x3) = F̃0(x
3) = d2x

3 + (a1 + d1 + K0); (C 35)

ξ1 = −F̃1 = − (K1 + h5 + e1) ; (C 36)

ξ2 = −F̃2 = −(l7 + K2 + e3); (C 37)

ξ3(x0) = −F̃3(x
0) = d2x

0 − (m1 + g1 + c); (C 38)

ξ5 = 0. (C 39)

The Killing group in this range is

Bx3,STD. ⊗s Tr.(1, 3)STD.. (C 40)
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By means of the distribution Θ̂R(x5
0 − x5), by the ridenominations (C 17) of case I)

and putting

(a1 + d1 + K0) = T 0;

− (K1 + h5 + e1) =
1

c1

T 1;

−(l7 + K2 + e3) =
1

c2
T 2;

−(m1 + g1 + c) = T 3;

d2 = −B3,

(C 41)

one gets the following expression of the contravariant vector for the form II of the gravi-

tational metric in the whole energy range:

ξ0(x1, x2, x3, x5) = Θ̂R(x5
0 − x5)

[
−c1ζ

1x1 − c2ζ
2x2 + ζ5F (x5)

]
− ζ3x3 + T 0; (C 42)

ξ1(x0, x2, x3, x5) = Θ̂R(x5
0 − x5)

[
−ζ1x0 +

c2

c1
θ3x2 − θ2x3 − Ξ1F (x5)

]
+ T 1; (C 43)

ξ2(x0, x1, x3, x5) = Θ̂R(x5
0 − x5)

[
−ζ2x0 − θ3x1 + θ1x3 − Ξ2F (x5)

]
+ T 2; (C 44)

ξ3(x0, x1, x2, x5) = Θ̂R(x5
0 − x5)

[
c1θ

2x1 − c2θ
1x2 − Ξ3F (x5)

]
− ζ3x0 + T 3; (C 45)

ξ5(x, x5) =

= Θ̂R(x5
0 − x5)

{
∓
(
f(x5)

)− 1
2 [ζ5x0 + c1Ξ

1x1 + c2Ξ
2x2 + Ξ3x3 − T 5]

}
. (C 46)

C3 Form III

gAB,DR5,grav.(x
5) =

= diag

(
1 + Θ(x5 − x5

0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]
,

−β2
1(x

5),−β2
2(x

5),

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,±f(x5)

)
, (C 47)
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where the functions β2
1(x

5) and β2
2(x

5) have in general the properties:

β2
1(x

5), β2
2(x

5) ∈ R+
0 , ∀x5 ∈ R+

0 ;

β2
1(x

5) �= β2
2(x

5);

β2
1(x

5) �= 1

4

(
1 +

x5

x5
0,grav.

)2

, β2
2(x

5) �= 1

4

(
1 +

x5

x5
0,grav.

)2

.

(C 48)

Therefore, the present case III) differs from the previous case II) for the nature strictly

functional (and not composite, namely expressible in terms of one or more Heaviside

functions) of β2
1(x

5) and β2
2(x

5).

C3.1 III a)

The 5-d metric reads

gAB,DR5(x
5) = diag

(
1,−β2

1(x
5),−β2

2(x
5),−1,±f(x5)

)
. (C 49)

Then, from definitions (124) and (125), there follow Eqs.(C 28),(C 30) and

A0(x
5) = A3(x

5) = 0; (C 50.1)

B0(x
5) = B3(x

5) =
(
f(x5)

) 1
2 . (C 50.2)

Therefore, the Υ-hypothesis is satisfied only for μ = 1 and/or 2 under condition (244).

From Subsect.4.3, the contravariant 5-vector ξA(x, x5) corresponding to form III) of the

5-d. gravitational metric below threshold is given by Eqs. (118)-(122), in which (some



Electronic Journal of Theoretical Physics 6, No. 20 (2009) 59–192 167

of) the real parameters are constrained by the system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(01) [d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)] +

+β2
1(x

5) [h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)] = 0;

(02) (d8x
1x3 + d7x

1 + d4x
3 + d3) +

+β2
2(x

5) [l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)] = 0;

(03) (d8x
1x2 + d6x

1 + d4x
2 + d2) +

+ [m8x
1x2 + m7x

1 + m6x
2 + (m5 + g2)] = 0;

(12) β2
1(x

5) (h2x
0x3 + h1x

0 + h4x
3 + h3)+

+β2
2(x

5) (l2x
0x3 + l1x

0 + l4x
3 + l3) = 0;

(13) β2
1(x

5) (h2x
0x2 + h8x

0 + h4x
2 + h6)+

+ (m8x
0x2 + m7x

0 + m4x
2 + m3) = 0;

(23) β2
2(x

5) (l2x
0x1 + l6x

0 + l4x
1 + l8)+

+ (m8x
0x1 + m6x

0 + m4x
1 + m2) = 0.

(C 51)

Then, from the solutions of the above system, one finds

ξ0(x3) = F̃0(x
3) = d2x

3 + (a1 + d1 + K0); (C 52)

ξ1 = −F̃1 = − (K1 + h5 + e1) ; (C 53)

ξ2 = −F̃2 = −(l7 + K2 + e3); (C 54)

ξ3(x0) = −F̃3(x
0) = d2x

0 − (m1 + g1 + c); (C 55)

ξ5 = 0. (C 56)

Let us notice that the result obtained for ξA(x, x5) coincides with that of case II b),

Eqs.(C 35)-(C 39).

C3.2 III b)

The form of the 5-d. metric is identical to that of case II b):

gAB,DR5(x
5) =

= diag

(
1

4

(
1 +

x5

x5
0,grav.

)2

,−β2
1(x

5),−β2
2(x

5),−1

4

(
1 +

x5

x5
0,grav.

)2

,±f(x5)

)
. (C 57)
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Therefore, the same results of Subsect.C.2.2 hold. Moreover, we have just noted that case

III a) yields the same results of case II b), and thus of case III b) too. Consequently, for the

form III of the gravitational metric, the contravariant Killing vector of the gravitational

metric is independent of the energetic range considered. In conclusion, putting

(a1 + d1 + K0) ≡ T 0;

− (K1 + h5 + e1) ≡ T 1;

−(l7 + K2 + e3) ≡ T 2;

−(m1 + g1 + c) = T 3;

d2 = −ζ3,

(C 58)

one gets the following general form for ξA(x, x5) for form III of the gravitational metric

(∀x5 ∈ R+
0 ):

ξ0(x3) = −ζ3x3 + T 0; (C 59)

ξ1 = +T 1; (C 60)

ξ2 = +T 2; (C 61)

ξ3(x0) = −ζ3x0 + T 3; (C 62)

ξ5 = 0. (C 63)

Moreover, ∀x5 ∈ R+
0 the 5-d. Killing group is

Bx3,STD. ⊗s Tr.(1, 3)STD.. (C 64)

C4 Form IV

gAB,DR5,grav.(x
5) =

= diag

(
1 + Θ(x5 − x5

0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]
,

−
{
c + Θ(x5 − x5

0,grav.)
[
β2(x5)− c

]}
,−

{
c + Θ(x5 − x5

0,grav.)
[
β2(x5)− c

]}
,

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,±f(x5)

)
(C 65)

(c ∈ R+
0 , c �= 1), where the function β2(x5) has the following properties

β2(x5) ∈ R+
0 , ∀x5 ∈ ([x5

0,∞)) ⊂ R+
0 ;

β2(x5
0) = c;

β2(x5) �= 1

4

(
1 +

x5

x5
0,grav.

)2

.

(C 66)

Therefore this case is a special case of case II) with β2
1(x

5) = β2
2(x

5).
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C4.1 IV a)

The 5-d. metric in this case coincides with that of case I a) with c1 = c2 = c:

gAB,DR5(x
5) = diag

(
1,−c,−c,−1,±f(x5)

)
. (C 67)

and therefore all the results of Subsect.C.1.1 still hold with c1 = c2 = c.

C4.2 IV b)

The 5-d. metric is

gAB,DR5(x
5) =

=

(
diag

1

4

(
1 +

x5

x5
0,grav.

)2

,−β2(x5),−β2(x5),

−1

4

(
1 +

x5

x5
0,grav.

)2

,±f(x5)

)
. (C 68)

The results are the same of case II b) with β2
1(x

5) = β2
2(x

5) and c1 = c2 = c.

C5 Form V

gAB,DR5,grav.(x
5) =

= diag

(
1 + Θ(x5 − x5

0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]
,

−β2(x5),−β2(x5),

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,±f(x5)

)
, (C 69)

where the function β2(x5) has the following properties:

β2(x5) ∈ R+
0 , ∀x5 ∈ R+

0 ;

β2(x5) �= 1

4

(
1 +

x5

x5
0,grav.

)2

.
(C 70)

Therefore this case is a special case of case III) with β2
1(x

5) = β2
2(x

5).

C5.1 V a)

In the energy range considered the 5-d. metric (C 69) becomes

gAB,DR5(x
5) = diag

(
1,−β2(x5),−β2(x5),−1,±f(x5)

)
. (C 71)
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Then, from definitions (124) and (125), one gets Eqs.( C 28),(C 30) and

A0(x
5) = A3(x

5) = 0; (C 72.1)

B0(x
5) = B3(x

5) =
(
f(x5)

) 1
2 . (C 72.2)

Therefore, the Υ-hypothesis is satisfied only for μ = 1,2 under condition (244). From

Subsect.4.3, the contravariant Killing 5-vector ξA(x, x5) corresponding to form V) of the

5-d. gravitational metric below threshold is given by Eqs. (118)-(122), in which (some

of) the real parameters are constrained by the system:

(01) d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2) +

+β2(x5) [h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)] = 0;

(02) d8x
1x3 + d7x

1 + d4x
3 + d3+

+β2(x5) [l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)] = 0;

(03) d8x
1x2 + d6x

1 + d4x
2 + d2+

+m8x
1x2 + m7x

1 + m6x
2 + (m5 + g2) = 0;

(12) β2(x5) (h2x
0x3 + h1x

0 + h4x
3 + h3)+

+β2(x5) (l2x
0x3 + l1x

0 + l4x
3 + l3) = 0;

(13) β2(x5) (h2x
0x2 + h8x

0 + h4x
2 + h6)+

+m8x
0x2 + m7x

0 + m4x
2 + m3 = 0;

(23) β2(x5) (l2x
0x1 + l6x

0 + l4x
1 + l8) +

+m8x
0x1 + m6x

0 + m4x
1 + m2 = 0.

(C 73)

The solution of system (C 73) yields therefore, for ξA(x, x5):

ξ0(x3) = F̃0(x
3) = d2x

3 + (a1 + d1 + K0); (C 74)

ξ1(x2) = −F̃1(x
2) = l3x

2 − (K1 + h5 + e1) ; (C 75)

ξ2(x1) = −F̃2(x
1) = −l3x

1 − (l7 + K2 + e3); (C 76)

ξ3(x0) = −F̃3(x
0) = d2x

0 − (m1 + g1 + c); (C 77)

ξ5 = 0. (C 78)
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C5.2 V b)

The 5-d. metric has the same form of case IV b), Eq.(C 68). Consequently, all the results

of Subsect.C.4.2 hold. Moreover, the Killing vector has the same expression of case V a),

and it is therefore independent of the energy range. By the following redenomination of

the parameters

(a1 + d1 + K0) ≡ T 0;

− (K1 + h5 + e1) ≡ T 1;

−(l7 + K2 + e3) ≡ T 2;

−(m1 + g1 + c) = T 3;

d2 = −ζ3;

l3 = −θ3,

(C 79)

the contravariant Killing vector ξA(x, x5) of the gravitational metric (C 68) can be written

in the form (valid ∀x5 ∈ R+
0 ):

ξ0(x3) = −ζ3x3 + T 0; (C 80)

ξ1(x2) = θ3x2 + T 1; (C 81)

ξ2(x1) = −θ3x1 + T 2; (C 82)

ξ3(x0) = −ζ3x0 + T 3; (C 83)

ξ5 = 0. (C 84)

Then, ∀x5 ∈ R+
0 , the 5-d. Killing group is(

SO(2)STD.,Π(x1,x2) ⊗Bx3,STD.

)
⊗s Tr.(1, 3)STD.. (C 85)

C6 Form VI

gAB,DR5,grav.(x
5) =

= diag

(
1 + Θ(x5 − x5

0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]
,

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,

−
{
c + Θ(x5 − x5

0,grav.)
[
β2(x5)− c

]}
,

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,±f(x5)

)
,

(C 86)
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(c ∈ R+
0 , c �= 1) where the function β2(x5) has in general the properties

β2(x5) ∈ R+
0 , ∀x5 ∈ ([x5

0,∞)) ⊂ R+
0 ;

β2(x5
0) = c;

β2(x5) �= 1

4

(
1 +

x5

x5
0,grav.

)2

.

(C 87)

C6.1 VI a)

The form of the 5-d. metric is

gAB,DR5(x
5) = diag

(
1,−1,−c,−1,±f(x5)

)
. (C 88)

This is exactly case I a) with c1 = 1, c2 = c, and therefore all the results of Subsect.C.1.1

hold.

C6.2 VI b)

The 5-d. metric is

gAB,DR5(x
5) =

= diag

(
1

4

(
1 +

x5

x5
0,grav.

)2

,−1

4

(
1 +

x5

x5
0,grav.

)2

,

−β2(x5),−1

4

(
1 +

x5

x5
0,grav.

)2

,±f(x5)

)
(C 89)

and from definitions (124), (125) it follows

A0(x
5) = −A1(x

5) = −A3(x
5) =

=
1

8

(
1 +

x5

x5
0

)
x5

(x5
0)

2 (f(x5))
− 1

2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
;

B0(x
5) = B1(x

5) = B3(x
5) =

1

2

(
1 +

x5

x5
0

)
(f(x5))

1
2 ;

(C 90)

±A0(x
5)

B0(x5)
=
∓A1(x

5)

B1(x5)
=
∓A3(x

5)

B3(x5)
=

= ±1

4

1

f(x5)

x5

(x5
0)

2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
; (C 91)

A2(x
5) ≡ β(x5)(f(x5))−1/2·

·
[
−
(
β ′(x5)

)2
+ β(x5)β ′′(x5)− 1

2
β(x5)β ′(x5)f ′(x5)(f(x5))−1

]
; (C 92)
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B2(x
5) ≡ β(x5)(f(x5))1/2; (C 93)

±A2(x
5)

B2(x5)
=

= ±(f(x5))−1

[
−
(
β ′(x5)

)2
+ β(x5)β ′′(x5)− 1

2
β(x5)β ′(x5)f ′(x5)(f(x5))−1

]
.

(C 94)

Then, the Υ-hypothesis is satisfied for μ = 0, 1, 3 under condition (C 9), and for μ = 2

under condition:

−
(
β ′(x5)

)2
+ β(x5)β ′′(x5)− 1

2
β(x5)β ′(x5)f ′(x5)(f(x5))−1 �= λf(x5), λ ∈ R. (C 95)

So, under at least one of the conditions (C 9), (C 94), the contravariant Killing 5-vector

ξA(x, x5) of the gravitational metric in case VI b) is given by Eqs.(118)-(122), with (some

of) the real parameters being constrained by the system

(01) d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)+

+h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2) = 0;

(02)
1

4

(
1 +

x5

x5
0,grav.

)2

(d8x
1x3 + d7x

1 + d4x
3 + d3) +

+β2(x5) [l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)] = 0;

(03) d8x
1x2 + d6x

1 + d4x
2 + d2+

+m8x
1x2 + m7x

1 + m6x
2 + (m5 + g2) = 0;

(12)
1

4

(
1 +

x5

x5
0,grav.

)2

(h2x
0x3 + h1x

0 + h4x
3 + h3) +

+β2(x5) (l2x
0x3 + l1x

0 + l4x
3 + l3) = 0;

(13) h2x
0x2 + h8x

0 + h4x
2 + h6+

+m8x
0x2 + m7x

0 + m4x
2 + m3 = 0;

(23) β2(x5) (l2x
0x1 + l6x

0 + l4x
1 + l8) +

+
1

4

(
1 +

x5

x5
0,grav.

)2

(m8x
0x1 + m6x

0 + m4x
1 + m2) = 0.

(C 96)

Its solution yields the following explicit form of ξA(x, x5):

ξ0(x1, x3) = F̃0(x
1, x3) = − (h7 + e2) x1 − (m5 + g2)x3 + (a1 + d1 + K0); (C 97)
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ξ1(x0, x3) = −F̃1(x
0, x3) = − (h7 + e2) x0 − h6x

3 − (K1 + h5 + e1) ; (C 98)

ξ2 = −F̃2 = −(l7 + K2 + e3); (C 99)

ξ3(x0, x1) = −F̃3(x
0, x1) = − (m5 + g2) x0 + h6x

1 − (m1 + g1 + c); (C 100)

ξ5 = 0. (C 101)

Then, it is easily seen that the 5-d. Killing group in this subcase is

SO(2, 1)STD.M3 ⊗s Tr.(1, 3)STD.. (C 102)

Here, SO(2, 1)STD.M3 is the 3-parameter, homogeneous Lorentz group (generated by S2
SR,

K1
SR, K3

SR) of the 3-d. space M3 endowed with the metric interval

ds2
M3

=

(
1

4

(
1 +

x5

x5
0,grav.

)2
)

(
(
dx0

)2 −
(
dx1

)2 −
(
dx3

)2
) (C 103)

and Tr.(1, 3)STD. is the usual space-time translation group. Eq.(C 102) can be rewritten

as

P (1, 2)STD.M3 ⊗s Tr.STD.,x2 (C 104)

where P (1, 2)STD.M3 = SO(1, 2)STD.M3 ⊗s Tr.(1)STD.M3 is the Poincaré group of M3 and

Tr.(1)STD.,x2 is the 1-parameter group (generated by Υ2
SR) of the translations along x̂2.

In case VI, too, it is possible to write the Killing vector ξA(x, x5) of the gravitational

metric (C 86) in a form valid on the whole energy range by means of the (right) Heaviside

distribution Θ̂R(x5
0 − x5), by putting

B1 ≡ ζ1,
B2

c
≡ ζ2, B3 ≡ ζ3;

Θ1

c
≡ θ1, Θ2 ≡ θ2,

Θ3

c
≡ θ3;

Ξ0 ≡ ζ5,
Ξ2

c
≡ Ξ2′;

T 2

c
≡ T 2′

(C 105)

and identifying

(a1 + d1 + K0) = T 0;

− (K1 + h5 + e1) = T 1;

−(l7 + K2 + e3) =
1

c
T 2;

−(m1 + g1 + c) = T 3;

m5 + g2 = B3;

h6 = Θ2;

h7 + e2 = B1.

(C 106)
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One gets

ξ0(x1, x2, x3, x5) = Θ̂R(x5
0 − x5)

[
−cζ2x2 + ζ5F (x5)

]
− ζ1x1 − ζ3x3 + T 0; (C 107)

ξ1(x0, x2, x3, x5) = Θ̂R(x5
0 − x5)

[
cθ3x2 − Ξ1F (x5)

]
− ζ1x0 − θ2x3 + T 1; (C 108)

ξ2(x0, x1, x3, x5) = Θ̂R(x5
0 − x5)

[
−ζ2x0 + θ1x3 − θ3x1 − Ξ2F (x5)

]
+ T 2; (C 109)

ξ3(x0, x1, x2, x5) = Θ̂R(x5
0 − x5)

[
−cθ1x2 − Ξ3F (x5)

]
− ζ3x0 + θ2x1 + T 3; (C 110)

ξ5(x, x5) =

= Θ̂R(x5
0 − x5)

{
∓
(
f(x5)

)− 1
2 [ζ5x0 + Ξ1x1 + cΞ2x2 + Ξ3x3 − T 5]

}
. (C 111)

C7 Form VII

gAB,DR5,grav.(x
5) =

= diag

(
1 + Θ(x5 − x5

0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]
,

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
, β2(x5),

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,±f(x5)

)
, (C 112)

with the function β2(x5) having in general the properties

β2(x5) ∈ R+
0 , ∀x5 ∈ R+

0 ;

β2(x5) �= 1

4

(
1 +

x5

x5
0,grav.

)2

.
(C 113)

C7.1 VII a)

The 5-d. metric (C 112) reads

gAB,DR5(x
5) = diag

(
1,−1,−β2(x5),−1,±f(x5)

)
. (C 114)

Definitions (124) and (125) yield:

A0(x
5) = A1(x

5) = A3(x
5) = 0;

A2(x
5) ≡ β(x5)(f(x5))−1/2·

·
[
−
(
β ′(x5)

)2
+ β(x5)β ′′(x5)− 1

2
β(x5)β ′(x5)f ′(x5)(f(x5))−1

]
; (C 115)
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B0(x
5) = B1(x

5) = B3(x
5) =

(
f(x5)

) 1
2 ;

B2(x
5) ≡ β(x5)(f(x5))1/2; (C 116)

±A2(x
5)

B2(x5)
=

= ±(f(x5))−1

[
−
(
β ′(x5)

)2
+ β(x5)β ′′(x5)− 1

2
β(x5)β ′(x5)f ′(x5)(f(x5))−1

]
. (C 117)

So, the Υ-hypothesis is satisfied only for μ = 2 under condition (C 95). The contravari-

ant Killing vector ξA(x, x5) for the gravitational metric in this subcase is still given by

Eqs.(118)-(122), in which (some of) the real parameters satisfy the following constraint

system:

(01) d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2) +

+h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2) = 0;

(02) d8x
1x3 + d7x

1 + d4x
3 + d3+

+β2(x5) [l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)] = 0;

(03) d8x
1x2 + d6x

1 + d4x
2 + d2+

+m8x
1x2 + m7x

1 + m6x
2 + (m5 + g2) = 0;

(12) h2x
0x3 + h1x

0 + h4x
3 + h3+

+β2(x5) (l2x
0x3 + l1x

0 + l4x
3 + l3) = 0;

(13) h2x
0x2 + h8x

0 + h4x
2 + h6+

+m8x
0x2 + m7x

0 + m4x
2 + m3 = 0;

(23) β2(x5) (l2x
0x1 + l6x

0 + l4x
1 + l8) +

+m8x
0x1 + m6x

0 + m4x
1 + m2 = 0,

(C 118)

whose solution can be shown to coincide with that of subcase VI b). One gets therefore

ξ0(x1, x3) = F̃0(x
1, x3) = − (h7 + e2) x1 − (m5 + g2) x3 + (a1 + d1 + K0); (C 119)

ξ1(x0, x3) = −F̃1(x
0, x3) = − (h7 + e2) x0 − h6x

3 − (K1 + h5 + e1) ; (C 120)

ξ2 = −F̃2 = −(l7 + K2 + e3); (C 121)

ξ3(x0, x1) = −F̃3(x
0, x1) = − (m5 + g2) x0 + h6x

1 − (m1 + g1 + c); (C 122)

ξ5 = 0. (C 123)
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C7.2 VII b)

In the energy range x5 > x5
0 the form of the metric coincides with that of the case VI in

the same range, Eq.(C 89), and therefore all results of Subsect.C.6.2 still hold.

By putting

(a1 + d1 + K0) = T 0;

− (K1 + h5 + e1) = T 1;

−(l7 + K2 + e3) = T 2;

−(m1 + g1 + c) = T 3;

m5 + g2 = ζ3;

h7 + e2 = ζ1,

(C 124)

one finds that the general form of ξA(x, x5) for the gravitational metric in form VII is

independent of the energy range and coincides with that obtained in case VI in the range

x5 > x5
0. It reads explicitly (cfr. Eqs.(C 107)-(C 111))

ξ0(x1, x3) = −ζ1x1 − ζ3x3 + T 0; (C 125)

ξ1(x0x3) = −ζ1x0 − θ2x3 + T 1; (C 126)

ξ2 = +T 2; (C 127)

ξ3(x0, x1) = −ζ3x0 + θ2x1 + T 3; (C 128)

ξ5(x, x5) = 0. (C 129)

Consequently, the 5-d. Killing group is, ∀x5 ∈ R+
0 (see case VI):

SO(1, 2)STD.M3 ⊗s Tr.(1, 3)STD. = P (1, 2)STD.M3 ⊗s Tr.(1)STD.,x2. (C 130)

C8 Form VIII

gAB,DR5,grav.(x
5) =

= diag

(
1 + Θ(x5 − x5

0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]
,

−
{
c + Θ(x5 − x5

0,grav.)
[
β2(x5)− c

]}
,

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,±f(x5)

)
(C 131)



178 Electronic Journal of Theoretical Physics 6, No. 20 (2009) 59–192

(c ∈ R+
0 , c �= 1), with

β2(x5) ∈ R+
0 , ∀x5 ∈ ([x5

0,∞)) ⊂ R+
0 ;

β2(x5
0) = c;

β2(x5) �= 1

4

(
1 +

x5

x5
0,grav.

)2

.

(C 132)

C9 VIII a)

In this subcase metric (C 131) becomes

gAB,DR5(x
5) = diag

(
1,−c,−1,−1,±f(x5)

)
, (C 133)

the same as case I a) with c1 = c, c2 = 1 (see Eq.(C 2)). Then, the results of Subsect.C.1.1

are valid.

C9.1 VIII b)

The metric (C 131) reads

gAB,DR5(x
5) =

= diag

(
1

4

(
1 +

x5

x5
0,grav.

)2

,−β2(x5),−1

4

(
1 +

x5

x5
0,grav.

)2

,

−1

4

(
1 +

x5

x5
0,grav.

)2

,±f(x5)

)
. (C 134)

and coincides with metric (C 89) of case VI b) except for the exchange of the space axes

1 � 2. By the usual procedure it is found that the Υ-hypothesis is satisfied for μ = 0, 2, 3

under condition (C 9) and for μ = 1 under condition (C 95). Therefore, under at least

one of these two conditions, the contravariant Killing vector ξA(x, x5) of the gravitational

metric in subcase VIII b) are given by Eqs.(118)-(122), in which (at least some of) the
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real parameters are constrained by the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(01)
1

4

(
1 +

x5

x5
0,grav.

)2

[d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)] +

+β2(x5) [h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)] = 0;

(02) d8x
1x3 + d7x

1 + d4x
3 + d3+

+l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4) = 0;

(03) d8x
1x2 + d6x

1 + d4x
2 + d2+

+m8x
1x2 + m7x

1 + m6x
2 + (m5 + g2) = 0;

(12) β2(x5) (h2x
0x3 + h1x

0 + h4x
3 + h3)+

+
1

4

(
1 +

x5

x5
0,grav.

)2

(l2x
0x3 + l1x

0 + l4x
3 + l3) = 0;

(13) β2(x5) (h2x
0x2 + h8x

0 + h4x
2 + h6)+

+
1

4

(
1 +

x5

x5
0,grav.

)2

(m8x
0x2 + m7x

0 + m4x
2 + m3) = 0;

(23) l2x
0x1 + l6x

0 + l4x
1 + l8+

+m8x
0x1 + m6x

0 + m4x
1 + m2 = 0.

(C 135)

Then, ξA(x, x5) is given by

ξ0(x2, x3) = F̃0(x
2, x3) = − (l5 + e4)x2 − (m5 + g2)x3 + (a1 + d1 + K0); (C 136)

ξ1 = −F̃1 = − (K1 + h5 + e1) ; (C 137)

ξ2(x0, x3) = −F̃2(x
0, x3) = − (l5 + e4)x0 − l8x

3 − (l7 + K2 + e3); (C 138)

ξ3(x0, x2) = −F̃3(x
0, x2) = − (m5 + g2)x0 + l8x

2 − (m1 + g1 + c); (C 139)

ξ5 = 0. (C 140)

It follows that the 5-d. Killing group is

SO(1, 2)STD.M3
⊗s Tr.(1, 3)STD.. (C 141)

Here SO(1, 2)STD.M3
is the 3-parameter Lorentz group (generated by S1

SR , K2
SR , K3

SR)

of the 3-d. manifold M3 with metric interval

ds2
M3

=

(
1

4

(
1 +

x5

x5
0,grav.

)2
)

(
(
dx0

)2 −
(
dx2

)2 −
(
dx3

)2
) (C 142)
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and Tr.(1, 3)STD. is the usual space-time translation group. Eq.(C 141) can be rewritten

in the form

P (1, 2)STD.M3
⊗s Tr.(1)STD.,x1, (C 143)

where we introduced the 6-parameter Poincaré group of M3, P (1, 2)STD.M3
= SO(1, 2)STD.M3

⊗s

Tr.(1)STD.M3
, and Tr.(1)STD.,x1 is the one-parameter translation group along x̂1 (gener-

ated by Υ1
SR).

Moreover, it is easy to see that the compact form of the contravariant Killing vector

for the gravitational metric in case VIII, valid ∀x5 ∈ R+
0 , is still given by Eqs.(B.107)-

(B.111), with the exchange 1 � 2.

C10 Form IX

gAB,DR5,grav.(x
5) =

= diag

(
1 + Θ(x5 − x5

0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]
,

−β2(x5),−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,±f(x5)

)
(C 144)

where

β2(x5) ∈ R+
0 , ∀x5 ∈ R+

0 ;

β2(x5) �= 1

4

(
1 +

x5

x5
0,grav.

)2

.
(C 145)

C10.1 IX a)

In the range 0 < x5 � x5
0 metric (C 144) becomes

gAB,DR5(x
5) = diag

(
1,−β2(x5),−1,−1,±f(x5)

)
, (C 146)

namely the same of case VII a) with the exchange 2 → 1. Therefore, performing such

an exchange in Eqs. (C 114)-(C 117), one finds that the hypothesis Υ of functional

independence is satisfied only for μ = 1 under condition (C 95). Under such a condition,

the contravariant Killing 5-vector ξA(x, x5) of the gravitational metric in the subcase IX

a) is given by Eqs.(118)-(122), with (some of) the real parameters being constrained by
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the system

(01) [d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)] +

+β2(x5) [h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)] = 0;

(02) d8x
1x3 + d7x

1 + d4x
3 + d3+

+l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4) = 0;

(03) d8x
1x2 + d6x

1 + d4x
2 + d2+

+m8x
1x2 + m7x

1 + m6x
2 + m5 + g2 = 0;

(12) β2(x5) (h2x
0x3 + h1x

0 + h4x
3 + h3)+

+l2x
0x3 + l1x

0 + l4x
3 + l3 = 0;

(13) β2(x5) (h2x
0x2 + h8x

0 + h4x
2 + h6)+

+m8x
0x2 + m7x

0 + m4x
2 + m3 = 0;

(23) l2x
0x1 + l6x

0 + l4x
1 + l8+

+m8x
0x1 + m6x

0 + m4x
1 + m2 = 0.

(C 147)

The solution of the above system is the same obtained in subcase VIII b). So, the explicit

form of ξA(x, x5) for the gravitational metric in form IX under threshold coincides with

that of case VIII over threshold, Eqs.(C 136)-(C 140).

C10.2 IX b)

In the energy range x5 > x5
0 the form of the metric coincides with that of case VIII in

the same range:

gAB,DR5(x
5) =

= diag

(
1

4

(
1 +

x5

x5
0,grav.

)2

,−β2(x5),

−1

4

(
1 +

x5

x5
0,grav.

)2

,−1

4

(
1 +

x5

x5
0,grav.

)2

,±f(x5)

)
, (C 148)

so all the results of Subsect.C.8.2 hold. The contravariant Killing vector ξA(x, x5) is there-

fore independent of the energy range, and (on account of the discussion of Subsect.C.8.2)

its expression is obtained from Eqs.(C 125)-(C 130) by the exchange 1 	 2.
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As to the 5-d. Killing group, it is therefore, ∀x5 ∈ R+
0 (cfr. case VIII b)):

SO(1, 2)STD.M3
⊗s Tr.(1, 3)STD. = P (1, 2)STD.M3

⊗s Tr.(1)STD.,x2. (C 149)

C11 Form X

gAB,DR5,grav.(x
5) =

= diag

(
1 + Θ(x5 − x5

0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]
,

−
{

c1 + Θ(x5 − x5
0,grav.)

[
c1

4

(
1 +

x5

x5
0,grav.

)2

− c1

]}

−
{

c2 + Θ(x5 − x5
0,grav.)

[
c2

4

(
1 +

x5

x5
0,grav.

)2

− c2

]}
,

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,±f(x5)

)
(C 150)

(c1, c2 ∈ R+
0 , in gen.: c1 �= 1, c2 �= 1, c1 �= c2).

C11.1 X a)

In the energy range 0 < x5 � x5
0 the form of the 5-d. metric is identical to that of cases I)

and II) in the same range, Eq.(C 2). All the results of Subsects.C.1.1 and C.2.1 are valid.

The Υ-hypothesis is violated ∀μ ∈ {0, 1, 2, 3}. The Killing equations, and therefore the

Killing vector, coincide with those corresponding to the e.m. and weak metrics above

threshold (Subsubsect.5.1.1) and to the strong metric below threshold (Subsubsect.5.2.1).

Therefore the contravariant Killing 5-vector ξA(x, x5) is given by Eqs.(139)-(143), and the

Killing group of the sections at dx5 = 0 of �5 is of course the rescaled Poincaré group (C

4).

C11.2 X b)

The 5-d. metric becomes

gAB,DR5(x
5) =

= diag

(
1

4

(
1 +

x5

x5
0,grav.

)2

,−c1

4

(
1 +

x5

x5
0,grav.

)2

,

−c2

4

(
1 +

x5

x5
0,grav.

)2

,−1

4

(
1 +

x5

x5
0,grav.

)2

,±f(x5)

)
. (C 151)
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Therefore

A0(x
5) = −A3(x

5) =

=
1

8

(
1 +

x5

x5
0

)
x5

(x5
0)

2 (f(x5))
− 1

2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
;

B0(x
5) = B3(x

5) =
1

2

(
1 +

x5

x5
0

)
(f(x5))

1
2 ;

(C 152)

±A0(x
5)

B0(x5)
=
∓A3(x

5)

B3(x5)
= ±1

4

1

f(x5)

x5

(x5
0)

2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
; (C 153)

Ai(x
5) =

= −(ci)
3
2

8

(
1 +

x5

x5
0

)
x5

(x5
0)

2 (f(x5))
− 1

2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
;

Bi(x
5) =

(ci)
1
2

2

(
1 +

x5
0

x5

)
(f(x5))

1
2 ,

i = 1, 2;

(C 154)

±Ai(x
5)

Bi(x5)
= ∓ci

4

1

f(x5)

x5

(x5
0)

2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
, i = 1, 2. (C 155)

It follows that the Υ-hypothesis is satisfied by any μ = 0, 1, 2, 3 under condition (C 9).

Then, under such condition, the contravariant Killing vector ξA(x, x5) for the gravita-

tional metric in this subcase is given by Eqs.(118)-(122), in which (some of) the real
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parameters satisfy the constraint system

(01) d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)+

+c1 [h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)] = 0;

(02) d8x
1x3 + d7x

1 + d4x
3 + d3+

+c2 [l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)] = 0;

(03) d8x
1x2 + d6x

1 + d4x
2 + d2+

+m8x
1x2 + m7x

1 + m6x
2 + (m5 + g2) = 0;

(12) c1 (h2x
0x3 + h1x

0 + h4x
3 + h3)+

+c2 (l2x
0x3 + l1x

0 + l4x
3 + l3) = 0;

(13) c1 (h2x
0x2 + h8x

0 + h4x
2 + h6)+

+m8x
0x2 + m7x

0 + m4x
2 + m3 = 0;

(23) c2 (l2x
0x1 + l6x

0 + l4x
1 + l8)+

+m8x
0x1 + m6x

0 + m4x
1 + m2 = 0.

(C 156)

Then, ξA(x, x5) explicitly reads, in this subcase:

ξ0(x1, x2, x3) = F̃0(x
1, x2, x3) =

= −c1(h7 + e2)x
1 − c2 (l5 + e4)x2 − (m5 + g2) x3 + (a1 + d1 + K0); (C 157)

ξ1(x0, x2, x3) = −F̃1(x
0, x2, x3) =

= −(h7 + e2)x
0 − h3x

2 − h6x
3 − (K1 + h5 + e1) ; (C 158)

ξ2(x0, x1, x3) = −F̃2(x
0, x1, x3) =

= − (l5 + e4) x0 +
c1

c2

h3x
1 − l8x

3 − (l7 + K2 + e3); (C 159)

ξ3(x0, x1, x2) = −F̃3(x
0, x1, x2) =

= − (m5 + g2) x0 + c1h6x
1 + c2l8x

2 − (m1 + g1 + c); (C 160)

ξ5 = 0. (C 161)
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By introducing as usual the distribution Θ̂R(x5
0 − x5), putting

B1

c1
≡ ζ1,

B2

c2
≡ ζ2, B3 ≡ ζ3;

Θ1

c2

≡ θ1,
Θ2

c1

≡ θ2,
Θ3

c2

≡ θ3;

Ξ0 ≡ ζ5,
Ξ1

c1
≡ Ξ1′,

Ξ2

c2
≡ Ξ2′;

T 1

c1

≡ T 1′,
T 2

c2

≡ T 2′,

(C 162)

and identifying

(a1 + d1 + K0) = T 0;

− (K1 + h5 + e1) =
1

c1
T 1;

−(l7 + K2 + e3) =
1

c2
T 2;

−(m1 + g1 + c) = T 3;

h7 + e2 =
B1

c1

; l5 + e4 =
B2

c2

; m5 + g2 = B3;

l8 = −Θ1

c2
; h6 =

Θ2

c1
; h3 = −Θ3

c1
,

(C 163)

one gets the following general form of the Killing vector in case X, valid ∀ x5 ∈ R+
0 :

ξ0(x1, x2, x3, x5) = Θ̂R(x5
0 − x5)

[
ζ5F (x5)

]
− c1ζ

1x1 − c2ζ
2x2 − ζ3x3 + T 0; (C 164)

ξ1(x0, x2, x3, x5) = Θ̂R(x5
0 − x5)

[
−Ξ1F (x5)

]
− ζ1x0 +

c2

c1
θ3x2 − θ2x3 + T 1; (C 165)

ξ2(x0, x1, x3, x5) = Θ̂R(x5
0 − x5)

[
−Ξ2F (x5)

]
− ζ2x0 − θ3x1 + θ1x3 + T 2; (C 166)

ξ3(x0, x1, x2, x5) = Θ̂R(x5
0 − x5)

[
−Ξ3F (x5)

]
− ζ3x0 + c1θ

2x1 − c2θ
1x2 + T 3; (C 167)

ξ5(x, x5) =

= Θ̂R(x5
0 − x5)

{
∓
(
f(x5)

)− 1
2 [ζ5x0 + c1Ξ

1x1 + c2Ξ
2x2 + Ξ3x3 − T 5]

}
. (C 168)

The 5-d. Killing group in this range is the Poincaré one, suitably rescaled

[P (1, 3)STD. = SO(1, 3)STD. ⊗s Tr.(1, 3)STD.]|x1−→√c1x1,x2−→√c2x2 (C 169)

as in the energy range 0 < x5 � x5
0.
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C12 Form XI

gAB,DR5,grav.(x
5) =

= diag

(
1 + Θ(x5 − x5

0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]
,

−c1

4

(
1 +

x5

x5
0,grav.

)2

,−c2

4

(
1 +

x5

x5
0,grav.

)2

,

−
{

1 + Θ(x5 − x5
0,grav.)

[
1

4

(
1 +

x5

x5
0,grav.

)2

− 1

]}
,±f(x5)

)
(C 170)

(c1, c2 ∈ R+
0 . In gen.: c1 �= 1, c2 �= 1, c1 �= c2).

C12.1 XI a)

Metric (C 170) reads

gAB,DR5(x
5) =

= diag

(
1,−c1

4

(
1 +

x5

x5
0,grav.

)2

,−c2

4

(
1 +

x5

x5
0,grav.

)2

,−1,±f(x5)

)
. (C 171)

Therefore

A0(x
5) = A3(x

5) = 0; (C 172.1)

B0(x
5) = B3(x

5) =
(
f(x5)

) 1
2 ; (C 172.2)

Ai(x
5) =

= −(ci)
3
2

8

(
1 +

x5

x5
0

)
x5

(x5
0)

2 (f(x5))
− 1

2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
;

Bi(x
5) =

(ci)
1
2

2

(
1 +

x5
0

x5

)
(f(x5))

1
2 , i = 1, 2;

(C 173)

±Ai(x
5)

Bi(x5)
= ∓ci

4

1

f(x5)

x5

(x5
0)

2

[
1

x5
+

1

2

f ′(x5)

f(x5)
+

1

2

x5
0

x5

f ′(x5)

f(x5)

]
, i = 1, 2. (C 174)

So the Υ-hypothesis is satisfied for μ = 1, 2 under condition (C 9), which ensures that the

contravariant Killing vector ξA(x, x5) for the gravitational metric in this subcase is given
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by Eqs.(118)-(122), where (some of) the real parameters are constrained by the system

(01) d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2) +

+
c1

4

(
1 +

x5

x5
0,grav.

)2

[h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)] = 0;

(02) (d8x
1x3 + d7x

1 + d4x
3 + d3) +

+
c2

4

(
1 +

x5

x5
0,grav.

)2

[l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)] = 0;

(03) (d8x
1x2 + d6x

1 + d4x
2 + d2) +

+ [m8x
1x2 + m7x

1 + m6x
2 + (m5 + g2)] = 0;

(12) c1 (h2x
0x3 + h1x

0 + h4x
3 + h3)+

+c2 (l2x
0x3 + l1x

0 + l4x
3 + l3) = 0;

(13)
c1

4

(
1 +

x5

x5
0,grav.

)2

(h2x
0x2 + h8x

0 + h4x
2 + h6) +

+ (m8x
0x2 + m7x

0 + m4x
2 + m3) = 0;

(23)
c2

4

(
1 +

x5

x5
0,grav.

)2

(l2x
0x1 + l6x

0 + l4x
1 + l8)+

+ (m8x
0x1 + m6x

0 + m4x
1 + m2) = 0.

(C 175)

From the solution of this system one gets the explicit form of the Killing 5-vector:

ξ0(x3) = F̃0(x
3) = − (m5 + g2)x3 + (a1 + d1 + K0); (C 176)

ξ1(x2) = −F̃1(x
2) = −h3x

2 − (K1 + h5 + e1) ; (C 177)

ξ2(x1) = −F̃2(x
1) =

c1

c2
h3x

1 − (l7 + K2 + e3); (C 178)

ξ3(x0) = −F̃3(x
0) = − (m5 + g2)x0 − (m1 + g1 + c); (C 179)

ξ5 = 0. (C 180)

The metric (C 171) can be rewritten as

gAB,DR5,grav.(x
5) = diag

(
1

4

(
1 +

x5

x5
0,grav.

)2

gμν,M4
(x5),±f(x5)

)
(C 181)
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where M4 is the standard 4-d. Minkowski space with the coordinate scale transformation

(C 3.1)-(C 3.2) introduced in Subsect.C.1.1. Therefore, in the energy range 0 < x5 � x5
0

the 5-d. Killing group is the rescaled Poincaré group

[P (1, 3)STD. = SO(1, 3)STD. ⊗s Tr.(1, 3)STD.]|x1−→√c1x1,x2−→√c2x2 . (C 182)

C12.2 XI b)

In the energy range x5 > x5
0 the metric (C 170) coincides with that of case X) in the

same range, Eq.(C 151). Therefore, the results for this case coincide with those obtained

in Subsect.C.10.2. In particular, solution (C 157)-(C 161) holds for the contravariant

Killing vector ξA(x, x5)

The 5-d. Killing group in this range is(
SO(2)STD.(x1−→√c1x1,x2−→√c2x2) ⊗ Bx3,STD.

)
⊗s Tr.(1, 3)STD., (C 183)

where SO(2)STD.(x1−→√c1x1,x2−→√c2x2) = SO(2)
STD.,Π(x1−→

√
c1
c2

x1)
is the 1-parameter group

(generated by S3
SR) of the 2-d. rotations in the plane Π(x1, x2) characterized by the scale

transformations (C 3.1)-(C 3.2), Bx3,STD. is the usual 1-parameter group (generated by

K3
SR) of the Lorentz boosts along x̂3 and Tr.(1, 3)STD. is the group of standard space-time

translations.

Since(
SO(2)STD.(x1−→√c1x1,x2−→√c2x2) ⊗ Bx3,STD.

)
⊗s Tr.(1, 3)STD. �

� [P (1, 3)STD. = SO(1, 3)STD. ⊗s Tr.(1, 3)STD.]|x1−→√c1x1,x2−→√c2x2

(C 184)

we can state that the present case XI is the only one — in the framework of the Ansatz

of solution of Killing equations for the 5-d phenomenological .metric of gravitational

interaction — in which the 5-d. Killing group in the range 0 < x5 � x5
0 is a proper

(non-abelian) subgroup of the Killing group in the range x5 > x5
0 .

By introducing the left distribution Θ̂L(x5 − x5
0) (see Eq.(63))19 and putting

(a1 + d1 + K0) ≡ T 0;

− (K1 + h5 + e1) ≡ T 1;

−(l7 + K2 + e3) ≡ T 2;

−(m1 + g1 + c) ≡ T 3;

m5 + g2 ≡ ζ3; l5 + e4 ≡ ζ2; h7 + e2 ≡ ζ1;

l8 ≡ −θ1; h6 ≡ θ2; h3 ≡ −
c2

c1
θ3,

(C 185)

19The use of the left distribution Θ̂L(x5−x5
0) (instead of the right one Θ̂R(x5

0−x5) used in all the other
cases) is due to the fact already stressed that in the present case the 5-d. Killing group in the range
0 < x5 � x5

0 is a proper (non-abelian) subgroup of the Killing group in the range x5 > x5
0 . Indeed, let

us recall the complementary nature of the two distributions, expressed by Eq.(65).
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the contravariant Killing vector ξA(x, x5) of the gravitational metric in case XI can be

written in the following form (valid ∀x5 ∈ R+
0 ):

ξ0(x1, x2, x3, x5) = Θ̂L(x5 − x5
0)
[
−c1ζ

1x1 − c2ζ
2x2

]
− ζ3x3 + T 0; (C 186)

ξ1(x0, x2, x3, x5) = Θ̂L(x5 − x5
0)
[
−ζ1x0 − θ2x3

]
+

c2

c1

θ3x2 + T 1; (C 187)

ξ2(x0, x1, x3, x5) = Θ̂L(x5 − x5
0)
[
−ζ2x0 + θ1x3

]
− θ3x1 + T 2; (C 188)

ξ3(x0, x1, x2, x5) = Θ̂L(x5 − x5
0)
[
c1θ

2x1 − c2θ
1x2

]
− ζ3x0 + T 3; (C 189)

ξ5 = 0. (C 190)

Notice that in this case the dependence of (C 186)-(C 190) on x5 is fictitious, because

actually ξμ depends on x5 through the distribution Θ̂L(x5 − x5
0) only.
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Abstract: Using noncommutative deformed canonical commutation relations, a model
describing gravitation is constructed. A noncommutative Lemaitre- Tolman-Bondi like metric
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1. Introduction

Despite its success, the cosmological standard model ” The Hot Big Bang ” contains

certain unsolved problems ( horizon problems, relic particles abundances, etc..)[1] − [8].

This has let to some model extensions, such as the inflationary model [9]− [17]. Recently,

another cyclic model giving an alternative possibility to explain the origin and dynamics

of the universe evolution was proposed by Turok [18]−[19]. It differs from the inflationary

and classical Friedman cosmological models in the sense that our universe undergoes peri-

odic and infinite sequences of contractions ” The Big Crunch ” and expansions ” The Big

Bang ”. During these cycles, the temperature and density of the universe remain finite

and two hyper surfaces (branes) separated by a finite space extra dimension have enough

energy and momenta to interact through gravity. Thus, the branes are brought together

by these interactions and collide than bounce at regular intervals [18] − [19]. Further-

more, in the last two decades, non commutative geometry becomes the focus of interest of

∗ nnmebarki@yahoo.fr
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many research activities, especially those of model building [20]− [27]. There are several

motivations to speculate that the space-time becomes non commutative at very short

distances when quantum gravity becomes relevant and even better, if we believe that the

extra dimension idea can push the non commutativity scale lower. Moreover, in string

theories, the non commutative gauge theory appears as a certain limit in the presence of

a background field [28]− [29]. One approach to the non commutative geometry (NCG)

is the one based on the deformation of the space-time [20] − [27]. In this context, a

gauge field theory whith star products and Seiberg-Witten maps is used [22]. It provides

a systematic way to compute various observables which may contain a signature to the

hypothetical non commutative space-time structure. Another approach is to deform just

the canonical relations between the space-time coordinates and their canonical conjugates

while the remaining commutation relations vanish. The purpose of this paper is to build

and discuss a model describing gravity within the noncommutative deformed canonical

commutation relations approach. In section 2, we present the formalism and the non-

commutative Lemaitre-Tolman-Bondi like metric. In section 3, we discuss the various

resulted noncommutative models and scenarios. Finally in section 4, we present some of

the results and draw our conclusions

2. Formalism

In what follows, we take � = c = 1 and consider a noncommutative geometry, char-

acterized by the space-time coordinates x̂μ and momenta p̂μ which are non commuting

operators satisfying the following matrices valued commutation relations:

[x̂μ , x̂ν ] = 0 (1)

[x̂μ , p̂ν ] = i(δμνI + θμν) (2)

and

[p̂μ , p̂ν ] = 0 (3)

(I is 4x4 identity matrix ) where θμν are matrices valued parameters and taken to be

proportional to the Dirac matrices γμν in the curved space-time such that:

θμν =
1

4
ξ(x)γμν =

1

4
ξ(x) [γμ, γν] (4)

(here ξ(x) is a scalar function of the space-time variable xμ ). Notice that although

the above commutation relations do not fit into the case where the noncommutativity

parameters are c-numbers, there is nothing fundamentally wrong with this choice.
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2.1 Non commutative Gravity Model

The operators x̂νand p̂ν have as representations:

x̂ν = xν , p̂ν = −i∂̂ν (5)

where the noncommutative matrix derivative ∂̂ν has as expression

∂̂ν = ∂ν + iθνα∂α (6)

and

∂α = ĝμα∂μ (7)

(xν and ∂ν are the ordinary coordinates and derivative respectively). ĝμα is the inverse

of the noncommutative symmetric metric ĝμα (which is not a matrix) such that

ĝνμĝμα = δα
ν (8)

The modified affine connection (which is not Riemannian) denoted by Γ̂ν
μλ takes the

form:

Γ̂μ
αβ =

1

2
ĝμν

(
∂̂β ĝνα + ∂̂αĝνβ − ∂̂ν ĝαβ

)
(9)

which can be rewritten as:

Γ̂μ
αβ = Γ

μ

αβ + Γ̃μ
αβ (10)

where

Γ
μ

αβ =
1

2
ĝμν (∂β ĝνα + ∂αĝνβ − ∂ν ĝαβ) (11)

and

Γ̃μ
αβ =

i

2
ĝμν (θβσ∂σ ĝνα + θασ∂σ ĝνβ − θνσ∂σ ĝαβ) (12)

Here Γ̃μ
αβ represents a non metricity like a tensor. We remind the reader that in differential

geometry, the affine connection on a differentiable manifold with a metric can be always

decomposed into the sum of a Levi-Civita (metric) connection, a non metricity tensor

and a torsion. This is the case of theories with more complicated geometrical structure

like the Riemann-Cartan space with general metric-affine spaces (curvature, torsion and

non-metricity) and the Weyl-Cartan space which is a connected differentiable manifold

with a Lorentz metric obeying the Weyl non-metricity condition. In the Riemannian space

of general relativity the metric and the connection (which are considered respectively as

a potential and strength of the gravitational field) are linked through the requirement of

metric homogeneity (metricity condition). The latter assures that the length of a vector

transported parallel in any direction remains invariant. Regarding the noncommutative

matrices curvature and Ricci tensors R̂σ
λμν and R̂μν , they are given by:
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R̂μ
αβλ = ∂̂βΓ̂μ

αλ − ∂̂λΓ̂
μ
αβ + Γ̂μ

σβΓ̂σ
αλ − Γ̂μ

σλΓ̂σ
αβ (13)

and

R̂μν = R̂λ
μλν = ∂̂νΓ̂

λ
μλ − ∂̂λΓ̂

λ
μν + Γ̂λ

μσΓ̂σ
λν − Γ̂σ

μνΓ̂
λ
σλ (14)

We can also define a noncommutative matrix Einstein tensor Ĝμν as:

Ĝμν = R̂μν −
1

2
ĝμνR̂ (15)

where the non commutative matrix scalar curvature R̂ is :

R̂ = ĝμνR̂μν (16)

Now, we define the noncommutative Hilbert-Einstein INCG by

INCG =
1

64πκ

∫
d4x

√
ĝĝμν TrR̂μν (17)

Where κ is the gravitational constant , ĝ stands for |det (ĝμν)|and Tr is the trace over the

gamma Dirac matrices. Since Trθβσ = 0 , thus the terms linear in θβσ do not contribute

in the expression of TrR̂μ
αβλ and therefore:

Rαλ ≡ TrR̂αλ = Rαλ + TrR̃αλ (18)

where R̃μν and Rμν are given by:

R̃μν =
(
iθβσ∂σΓ̃β

μν − iθνσ∂σΓ̃β
μβ + Γ̃β

σβΓ̃σ
μν − Γ̃β

σν Γ̃
σ
μβ

)
(19)

and

Rμν = 4(∂νΓ
λ

μλ − ∂λΓ
λ

μν + Γ
λ

μσΓ
σ

λν − Γ
σ

μνΓ
λ

σλ) (20)

It is worth to mention that it is easy to show that, the principle of a least action leads

to the following noncommutative Einstein field equations in the vacuum:

Gμν ≡ Rμν −
1

2
gμνRα

α = 0 (21)

which is equivalent to:

Gμν = κTμν (22)

where Gμνhas the form:

Gμν = Rμν −
1

2
gμνR

α
α (23)

and Tμν is an effective matter energy-momentum tensor induced by the non commutativity

of the space and has as expression:
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Tμν =
−1

κ
(TrR̃ μν −

1

2
gμνTrR̃α

α) (24)

This means that the non commutativity deforms the space and generates a more complex

structure with a non metricity contributing to the field equations and induce an effective

macroscopic matter energy-momentum tensor as an additional source of gravity. This is

not surprising about the role of the deformed canonical commutation relations in quantum

mechanics where it was shown in ref.[27], that there exists an intimate connection to the

curved space. Moreover, a suitable choice of the position-momentum commutator can

elegantly describe many features of gravity, including the IR/UV correspondence and

dimensional reduction (holography)[28]. In what follows, we set:

ξ2 (x) = 4η2φ (x) (25)

( η " 1 is a constant parameter which characterizes the space noncommutativity). Since

ĝνα is a solution of the field equations, it is assumed to have the form:

ĝνα = gνα + η2g(1)
να (26)

where gναis the classical Einstein Riemannian metric and g
(1)
να is a non commutative

correction to be determined later. Furthermore, to simplify our calculation, we assume

that the only non vanishing matrix valued parameters are θ01(of course our qualitative

results remain valid in the general case). Then, it is easy to show that at the O(η2), one

has:
1

4
Trθ01θ01 ≈ η2φ (x) (g01g01 − g00g11) (27)

It is important to mention that the noncommutative Hilbert-Einstein action given in

eq.(17) is invariant under general coordinate transformations.

2.2 Non Commutative Lemaitre-Tolman-Bondi Like Metric:

Standard cosmology is based on Friedman-Lemaitre-Robertson.-Walter (FLRW) models

which are characterized by spatially homogeneous and isotropic geometry and a matter

content represented by a perfect fluid although it was proven by Tupper [30] the possibility

of associating to the same metric a more general non perfect fluid with a heat conductor

vector and anisotropic pressure tensor. FLRW universes were very successful in explain-

ing the major features of the observed universe (observed galactic redshifts, remnant

black body radiation and element abundance predictions and observations). However,

these models do not describe the real universe well in an essential way, in that the highly

idealized degree of symmetry does not correspond exactly to the real universe. Thus, they

can serve as basic models giving the largest-scale smoothed out features of the observable

physical universe, but one needs to perturb them to get realistic (‘almost-FLRW’) uni-

verse models that can be used to examine the inhomogeneities and anisotropies arising
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during structure formation, and that can be compared in detail with observations. It is

worth to mention that small anisotropies in the microwave background imply that the

universe is almost FLRW. We remind also that the FLRW universe is characterized by

two functions, the Hubble rate H and the density parameter ρ which depend only on time

but are independent of the spatial location. However, one should keep in mind that their

values cannot be extracted directly from the observations but must be deduced from the

properties of light coming from the past light cone. In the context of the FLRW model

this is almost trivial, since the redshift and scale factor are everywhere related . This

theoretical simplicity should however not cloud the fact that all cosmological parameter

determination requires an element of interpretation of the data. Of course, the FLRW

interpretation of the properties of the past light cone has served cosmology well, giving

a good fit to observations and, until the late 90’s, implying a matter dominated universe

with a density Ω ≈ ΩM . (ΩM is a matter density). The situation changed dramatically

with the WMAP [31] and distant supernova data,[32], [33]. In fact, considering the recent

data from supernovae [34], [35], galaxy distributions [36] and anisotropies of the cosmic

microwave background [37], the simplest FLRW model would lead to a highly contra-

dictory picture of the universe. With the actual best fit values for the average matter

density, one has ΩM ∼ 1from the Cosmic microwave background, ΩM ∼ 0.3 from the

Galaxy surveys and ΩM ∼ 0 from type Ia supernovae. The discrepancies between the

different data sets have conventionally been remedied by introducing the cosmological

constant or vacuum energy to the Einstein equations. This gives rise to an accelerated

expansion of the universe. As a consequence, the apparent dimming of the luminosity

of distant supernovae finds, in the context of perfectly homogeneous universe, a natural

explanation. However, although the cosmological concordance where the CDM-model

[38] fits the observations well, there is no theoretical understanding of the origin of the

cosmological constant or its magnitude. Despite a large number of different dark energy

models[38], [39] which attempt to provide a dynamical explanation for the cosmological

constant, but none of them are compelling from particle physics point of view and very

often they require fine-tuning. Facing such difficulties, one might be tempted to con-

sider a relinquishing of the FLRW assumption concerning the perfect homogeneity of the

universe. After all, inhomogeneities are abundant in the universe: there are not only

clusters of galaxies but also large voids. Since general relativity is a non-linear theory,

any relatively small local inhomogeneities with a sufficiently large density contrast could

in principle give rise to cosmological evolution that is not accessed by the usual cosmo-

logical perturbation theory in an FLRW background. In fact, the potentially interesting

consequences of the inhomogeneities were recognized already at the time when the homo-

geneous and isotropic models of the universe were first studied, but their impact on the

global dynamics of the universe is still largely unknown [40]. Now, can the acceleration

of the universe be just a trick of light, a misinterpretation that arises due to the over

simplification of the real, inhomogeneous universe inherent in the FLRW model?. Light,

while traveling though inhomogeneities, does not see the average Hubble expansion but
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rather feels its variations, which could sum up to an important correction. This effect is

particularly important for the case of large scale inhomogeneities. This will be a good

motivation for our work which consists essentially to consider a spherically symmetric

universe with radial inhomogeneities due to the noncommutativity of the space geometry

manifested through the deformation of the canonical commutation relations of eqs.(1)-

(3). Choosing spatial coordinates to comove (dxi/dt = 0) with the matter, the spatial

origin (xi = 0) as the symmetry center, and the time coordinate (x0 ≡ t) to measure the

proper time of the comoving fluid, the line element takes the general form [41]− [43].

ds2 = −dt2 + Û (r, t) dr2 + V̂ (r, t)
(
dθ2 + sin2 θdϕ2

)
(28)

where the functions Û (r, t) and V̂ (r, t) have both temporal and spatial dependence and

parametrized as:

Û (r, t) = eβ(r,t) , V̂ (r, t) = eα(r,t) (29)

(r, θ and ϕ stand for the spherical coordinates and α (r, t) and β (r, t) are functions to

be determined later). The metric in eq.(28) is called the Lemaitre-Tolman-Bondi (LTB)

metric. The noncomutative metric tensor components read:

ĝ00 = ĝtt = −1, ĝ11 = ĝrr = eβ , ĝ22 = ĝθθ = eα , ĝ33 = ĝϕϕ = ĝ22 sin2 θ (30)

By setting

φ (x) = σ(x)e−β (31)

one can show easily that the trace of the noncommutative Ricci tensor TrR̃μν components

have the following expressions:

TrR̃01 = −1

2
η2σe−β

{
2
·
α
′
− 2α′

·
β + (α′ − β ′)

·
α

}
− 1

2
η2 ·σα′e−β (32)

TrR̃00 = −1

2
η2σe−2β

(
2α′′ + β ′′ +

1

2
(q − 2) β ′2 + qα′2 − 2α′β ′

)
− 1

4
η2e−β (β ′ + 2α′) σ′(33)

TrR̃11 =
1

2
η2σe−β

{
β ′′ − 1

2
β ′2 + α′β ′

}
− 1

2
η2σ

(
2

··
σ+

·
α

2
− ·

α
·
β

)
− 1

2
η2 ·α

·
σ − 1

4
η2e−ββ ′σ′(34)

TrR̃22 =
1

2
η2σe−2βeα

{
α′′ + α′2 − 1

2
α′β ′

}
− 1

4
η2eα−β ·α +

1

4
η2e−2βeαα′σ′ (35)

−1

2
η2σeα−β

(
··
α +

3

2

·
α

2
− 1

2

·
α
·
β

)
·
σ (36)

TrR̃33 = TrR̃22 sin2 θ (37)

and the non vanishing components of Rαλ are given by :
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R01 =
·
α
′
+

1

2

·
αα′ − 1

2
α′
·
β (38)

R00 =
1

2

{ ··
β + 2

··
α +

1

2

·
β

2

+
·
α

2
}

(39)

R11 = α′′ +
1

2
α′

2 − 1

2
α′β ′ − 1

2
eβ

{ ··
β +

1

2

·
β + 2

·
α
·
β

}
(40)

R22 = −1 +
1

2
eα−β

{
α′′ + α′2 − 1

2
α′β ′

}
− 1

2
eα

{
··
α +

·
α

2
+

1

2

·
α
·
β

}
(41)

and

R33 = R22 sin2 θ (42)

Here the notations ’′’, ’·’ and ’′′’ are for the first space, time and second space derivatives

respectively. In what follows, we take σ = σ(r, t) and assume the following separable

form of the functions α and β :

α = α (r, t) = α (r) + a (t) (43)

β = β (r, t) = β (r) + b (t) (44)

Than, we look for perturbative solutions around the classical ones at the O(η2) with

respect to the noncommutativity parameter η2 that is:

α (r) ≈ α0 (r) + η2α1 (r) ≡ α0 + η2α1 (45)

β (r) ≈ β0 (r) + η2β1 (r) ≡ β0 + η2β1 (46)

a (t) ≈ a0 (t) + η2a1 (t) (47)

and

b (t) ≈ b0 (t) + η2b1 (t) (48)

(here a0 (t) = b0 (t) ). The functions α0 (r) , β0 (r) and a0 (t) are the classical solutions

of the Friedman equations[44] − [48]. As in the commutative case, the noncommutative

Einstein equations in the presence of matter and a cosmological constant are given by:

TrĜμν = 8πκT̃μν (49)

where in our model , the shifted noncommutative momenta-energy stress tensor T̃μν is

assumed to have the form:

T̃μν = P̃ ĝμν +
(
ρ̃ + P̃

)
uμuν (50)
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with

P̃ = P − Λ

8πκ
(51)

and

ρ̃ = ρ +
Λ

8πκ
(52)

(κ is the Newton constant and P = P (t), ρ = ρ (t) and uμ denote the non commutative

pression , energy density and the four-vector velocity of the particle). It is to be noted

that eq.(50) does not mean that our universe is filled with a perfect fluid since P (r, t)

and ρ (r, t) are assumed to depend also on the noncommutativity parameter η and can

be expressed in a perturbative expansion around the classical values P0 (t) and ρ0 (t)

(functions only of time) respectively as:

ρ (r, t) = ρ0 (t) + η2ρ1 (t) (53)

and

P (r, t) = P0 (t) + η2P1 (t) (54)

After straightforward simplifications and up to the O( η2), the noncommutative Einstein

equations lead to the following independent differential equations:(
ȧ1 − ḃ1

)
ea0 + ȧ0σ − σ̇ = 0 (55)

2
··
a1 + b̈1 + 2ȧ0ȧ1 + ȧ0ḃ1 − σe−2a0

{
2α′′0 + α′20

}
− e−a0α′0σ

′ = −8πκ
(
ρ̃1 + 3P̃1

)
(56)

−2

r
β ′1 −

(
b̈1 + 2ȧ0ḃ1 + ȧ0ȧ1

)
ea0 − 2σ

··
a0 − ȧ0σ̇ = −8πκ

(
ρ̃1 − P̃1

)
ea0 (57)

and

−1

r
β ′1 −

2

r2
β1 +

2

r2

(
a1 − b1 + σe−a0

)
+

1

r
e−a0σ′ − σ

( ··
a1 + ȧ2

0

)
− 1

2
ȧ0σ̇ (58)

−(
··
a1 +

5

2
ȧ0ȧ1 +

1

2
ȧ0ḃ1)e

a0 = −8πκ
(
ρ̃1 − P̃1

)
ea0

where a0 satisfies the commutative classical equations[33]− [34] :

2
··
a0 +

·
a

2

0 = −16πκ

3

(
ρ̃0 + 3P̃0

)
(59)

·
a

2

0 =
32πκ

3
ρ̃0 − 4ke−a0 (60)

ρ̃0 and P̃0are the shifted classical matter density and pression respectively. Notice that

the non linear coupled differential equations (55)-(58) are very complicated to be solved.
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Thus, in order to make some simplifications and keep our calculations clear and transpar-

ent (since we are interested just in a qualitative study of the noncommutativity effect) we

consider only the case where the integration constant k = 0 ( present in the spatial part

of the classical FLRW metric) and take β0 = α1 = σ′ = 0.Therefore, the noncommutative

Einstein equations of eqs.(55)-(58) take the form:(
ȧ1 − ḃ1

)
ea0 + ȧ0σ − σ̇ = 0 (61)

2
··
a1 + b̈1 + 2ȧ0ȧ1 + ȧ0ḃ1 = −8πκ

(
ρ̃1 + 3P̃1

)
(62)

−2

r
β ′1 −

(
b̈1 + 2ȧ0ḃ1 + ȧ0ȧ1

)
ea0 −

(
2σ

··
a0 + ȧ0

·
σ
)

= −8πκ
(
ρ̃1 − P̃1

)
ea0 (63)

and

−1

r
β ′1 −

2

r2
β1 +

2

r2

{
a1 − b1 + σe−a0

}
−
{
··
a1 +

5

2
ȧ0ȧ1 +

1

2
ȧ0ḃ1

}
ea0

−1

2

{(
2
··
a0 + 2ȧ2

0

)
σ + ȧ0σ̇

}
= −8πκ

(
ρ̃1 − P̃1

)
ea0 (64)

After direct simplifications we obtain:

σ (t) = A exp a0 (65)

and therefore, eq.(61) leads to:

b1 (t) = a1 (t) (66)

The β1 function satisfies the following differential equations:

−2

r
β ′1 = k1 (67)

and

−1

r
β ′1 −

2

r2
β1 +

2c

r2
= k2 (68)

Eqs. (67) and (68) lead to:

β1 = −1

4
k1r

2 + D (69)

and

k1 = k2, c = 1 (70)

where k1, k2, c and D are integration constants. Thus eqs.(62)-(64) can be rewritten as:



Electronic Journal of Theoretical Physics 6, No. 20 (2009) 193–210 203

3
··
a1 + 3ȧ0ȧ1 = −8πκ

(
ρ̃1 + 3P̃1

)
(71)

k1 +
(··
a1 + 3ȧ0ȧ1

)
ea0 + A

(
2ä0 + ȧ2

0

)
ea0 = 8πκ

(
ρ̃1 − P̃1

)
ea0 (72)

and

k2 +
(··
a1 + 3ȧ0ȧ1

)
ea0 + A

(
··
a0 +

3

2
ȧ2

0

)
ea0 = 8πκ

(
ρ̃1 − P̃1

)
ea0 (73)

Notice that from the last two eqs.(72) and (73), we deduce that

··
a0 −

1

2
ȧ2

0 = 0 (74)

Since the classical Hubble parameter H0 (t) is defined as:

H0 (t) =
1

2
ȧ0 (75)

it is easy to show that:

Ḣ0 −H2
0 = 0 (76)

and consequently

H2
0 = Bea0 (77)

(B is a positive integration constant). Moreover the solution of eq.(77) gives:

H0 (t) = − 1

t + c
(78)

and therefore,

R0 (t) = −BH0 = +
B

t + c
∼

1

t
(79)

Now, from eqs.(61) and(62) one can show easily that:

·
a

2

0 = −8πκ

3

(
ρ̃0 + 3P̃0

)
=

32πκ

3
ρ̃0 (80)

implying that :

5ρ̃0 + 3P̃0 = 0 (81)

or equivalently:

5ρ0 + 3P0 = −2Λ0

8πκ
(82)

Notice that the result in eq.(82) does not seem that it is a consequence of the space
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deformation. The left or right hand sides do not disappear when the noncommutativity

parameter vanishes. In fact, the situation is similar to the one loop calculation of the

beta function in a noncommutative QED where the contribution coming from the non

planar Feynman diagrams give a result which does not depend on the noncommutativity

parameter [49]. Thus, one has to be carefull in the sense that when the noncommutativity

parameter vanishes we do not have at all eq. (82). Now, it is easy to show that the

function ρ̃0 (t) gets the form:

ρ̃0 (t) =
3

8πκ

(
1

t + c

)2

(83)

The result in eq. (82) is very interesting. It shows a kind of unification between dark en-

ergy and dark matter imposed by the noncommutativity of the geometry and manifested

by a relation between the cosmological constant Λ0 pression P0 and matter density ρ0

respectively. Notice also that if Λ0 ≥ 0 (Friedman or De Sitter like space), we are dealing

with a fluid which satisfies the constraint:

P0 ≤ −
5

3
ρ0 (84)

It is worth to mention that, the pressure P0 is not subject to the same constraint since it

can be related to the density ρ0 by an adiabatic index γ through the state equation:

P0 = γρ0

or another type of dark energy, the so-called Chaplygin gas which obeys an equation of

state like[50]− [51]

P0 = Aρ0 − B/ρ0, (A, B > 0) (85)

In our case γ ≤ −5
3
and since the matter energy density is defined semi-positive, we will

get a negative pression and violate the so called strong energy condition. This, will allow

for an expanding universe with an accelerating rate. However, if Λ0 < 0 (anti De Sitter

like space), γ has to be greater than −5
3

, if the pressure is negative. It is worth to mention

that recent observations of the luminosity of type Ia Supernovae indicate[52]− [53] an

accelerated expansion of the Universe and lead to the search for a new type of matter

which violates the strong energy condition i.e., P0 < 0.The matter content responsible for

such a condition to be satisfied at a certain stage of evolution of the universe is referred

to as a dark energy. Now, the NCG field eqs.(71) , (72) and (73) can be rewritten as:

6Ḣ1 + 12H0H1 = −8πκ
(
ρ̃1 + 3P̃1

)
(86)

and

2Ḣ1 + 12H0H1 + 8AH2
0 + k1H

−2
0 = 8πκ

(
ρ̃1 − P̃1

)
(87)

(k1 = Bk1). To look for a solution, we consider also for the non commutative corrections,

an equation of state of the form P̃1 = �ρ̃1.Then, eqs.(86) and(87) lead to:
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4Ḣ1 −
12

t
(1 + �)H1 +

4A

t2
(1 + 3�) +

1

2
k1 (1 + 3�) t2 = 0 (88)

where the general solution has the following form:

H1 (t) =
1

2
ȧ1 = B1t

3(1+�) + A
(1 + 3�)

(4 + 3�)
t−1 +

1

8
k1

(1 + 3�)

3�
t3 (89)

impling that:

1

2
a1 (t) =

B1

4 + 3�
t4+3� + A

(1 + 3�)

(4 + 3�)
ln t +

1

32
k1

(1 + 3�)

3�
t4 + B2 (90)

and consequently, the noncommutative universe radius R (t) takes the form:

R (t) =
B

t
exp η2

(
B1

4 + 3�
t4+3� + A

(1 + 3�)

(4 + 3�)
ln t +

1

32
k1

(1 + 3�)

3�
t4 + B2

)
(91)

It is worth to mention that the difference between the conventional Friedman equation

and its LTB generalization, is that all the quantities in the LTB case depend in addition

to the time t, on the r coordinate. Thus in the presence of inhomogeneities, the values of

the Hubble rate and the matter density can vary at every spatial point. As a consequence,

the inhomogeneities are of two physically different kinds: inhomogeneities in the matter

distribution, and inhomogeneities in the expansion rate. In our case, we have considered

only the latter case.

3. Results and Conclusions

Throughout this work, we conclude that the noncommutative cosmological dynamics dif-

fers from the classical one and the noncommutativity of the geometry plays an important

role in the origin and evolution of our universe. Despite the smallness of the noncommuta-

tivity parameter, the resulted effects at high energies are very important. Various models

are obtained depending on the free integration parameters of the noncommutative LTB

equations. In fact and independently of the various parameters, the Non commutative

universe radius R (t) tends to infinity when t→ 0. In fact

R (t)
t→0≈ B

t
exp

(
η2A

(1 + 3�)

(4 + 3�)
ln t

)
t→0→ +∞ (92)

For t→ +∞, R (t) behaves as

R (t)
t→+∞≈ B

t
exp

(
η2 B1

4 + 3�
t4+3�

)
(93)

Thus, the evolution of the universe depends on the sign of the parameter B1.

• B1 < 0 : In this case, the universe starts by a ” Big Crunch ” at the initial time

t = 0 until a total collapse at an infinite time. This situations is illustrated in fig
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(1) , f ig (2) and fig (3) , where we have set η2 = 10−2, B1 = −1, B2 = k1 = 0,

with � = 0, 0, 1
3

and A = +1,−1,−1 respectively. Notice that this model does not

correspond to our actual universe but a stellar gaz in a collapsing phase.

Fig. 1

Fig. 2

• B1 ≥ 0 : In this case, the universe starts with a ” Big Crunch ” at the initial

time t = 0 where the universe radius R (t) decreases until a minimal value R (t1) ,

followed by an expansion ” Big Bang ” till infinity. This evolution is illustrated in

fig (4) where we have set η2 = 10−2, � = 0, B1 = +1, A = +1, B2 = k1 = 0, and

in fig (5) where we have taken η2 = 10−2, � = 1
3
, B1 = +1, A = +1, B2 = k1 = 0.

The dynamics and the origin of the universe in this model is similar to that of the

cyclic model of Turok where the universe starts with a ” Big Crunch ” followed by a ”

Big Bang ” in infinite cyclic sequences. Notice that in our model, the universe expansion
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Fig. 3

Fig. 4

Fig. 5
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continue until infinity and is determined by the noncommutativity of the space geometry.

The latter is supposed related to the space-time properties at short distances and for large

distances the classical solution R0 (t) = B
t

determine the dynamics and evolution of the

universe. Thus after a certain time of expansion, the universe returns back to its initial

state where the noncommutativity of the space geometry does not contribute. Therefore,

the universe undegoes a collapse ” Big Crunch ” until distances where the space geometry

noncommutativity becomes efficient to avoid the collapse and the universe bounce into

a ” Big Bang ” and the cycle start over. In this model, we assume that at the origin

(initial time), the universe empty from matter and the collapse is due to vacuum energy

(cosmological constant or dark energy), the creation of matter and all the properties of

the universe are due to the period before the ” Big Bang ” and not after. Thus, the

dynamics and consequences of this model are the same as that of the Turok cyclic model

but the origin and mechanisms of the cycles are different. In our case, it is the non

commutativity which is responsible of the universe rebound and not the presence of the

extra dimensions as it is the case of Turok model.

The most important thing to be mentioned here is that in this model we can give a

possible explanation of the asymmetry and separation between matter and antimatter.

In fact, in this model the universe starts with a collapse ” Big Crunch ” but the evolution

depends on the sign of the parameter B1. For B1 < 0 the collapse continues until R (t) = 0

at t → +∞. However, for B1 ≥ 0 the collapse will be prevented by the repulsive forces

due to the noncommutativity of the space geometry and the universe rebounce to a ” Big

Bang ”. If we assume that the constant B1 is related to the matter baryonic charge with

B1 > 0 for baryons and B1 < 0 for anti-baryons, then before the matter and anti-matter

creation, the universe was in a collapsing state under the gravitational action (the effects

of the noncommutativity of the space geometry are negligible at large distances) until the

temperature becomes fairly enough for the matter-anti-matter creation process. At this

scale, the noncommutativity effects become important and as B1 < 0 for anti-matter and

B1 > 0 for matter, the former continues its collapsing however the latter rebounce under

the action of the gravitational forces due to the noncommutativity of the space geometry.

This mechanism gives a plausible explanation of the matter-antimatter asymmetry.
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Abstract: The problem of determining the radiation reaction force experienced by a scalar
charge moving in flat spacetime is investigated. A consistent renormalization procedure is used,
which exploits the Poincaré invariance of the theory. Radiative parts of Noether quantities
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1. Introduction

The problem of calculating the motion of an isolated point-like charge coupled to massive

scalar field in flat spacetime is an old one which is currently receiving renewed interest.

Classical equations of motion of a point particle interacting with a neutral massive vector

field were first found by Bhabha [1] following a method originally developed by Dirac

[2] for the case of electromagnetic field. In this method the finite force and self-force

terms in the equations of motion are obtained from the conservation laws for the energy-

momentum tensor of the field. It was extended by Bhabha and Harish-Chandra [3] to

particles interacting with any generalized wave field and was applied to the motion of a

simple pole of massive scalar field by Harish-Chandra [4].

The principal new feature of the field which carries rest mass in addition to energy

and momentum is that it is nonlocal. (The field depends not only on the current state

of motion of the source but on its past history.) Physically it is due to the fact that the

∗ yar@ph.icmp.lviv.ua
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massive field propagates at all speeds smaller than the velocity of light.

In [5, 6, 7, 8] a consistent theory of action at a distance was formulated in a case of

point sources coupled to massive scalar or vector fields. In electrodynamics of Wheeler

and Feynman [9], the interaction is assumed to be symmetric in time. The symmetric

case is the only one for which the equations of motion follow from a variational principle.

However, they do not contain any terms describing radiation damping. Such terms do

appear if the assumption of complete absorption is applied to these equations. By this

the authors [9] mean that the total advanced field of all the particles in the Universe

equals their total retarded field.

The equations of motion obtained from the field-theoretical and action-at-a-distance

point of view are different: the integrals over entire world line of the particle substitute for

integrals over the past motion which appear in case of purely retarded fields [1, 4]. In [10,

11, 12] the total cross sections for the scattering of the various kinds of mesons by a heavy

particle (nucleon) were calculated2 and compared with those obtained within the Bhabha

and Harish-Chandra approach. The predictions following from the two approaches should

be exploited to furnish an experimental decision between the two theories. It is worth

noting that in case of the retarded interactions, Havas [5] and Crownfield and Havas [13]

obtain the Bhabha [1] and Harish-Chandra [4] equations.

In the present paper we calculate energy-momentum and angular momentum carried

by outgoing massive scalar waves. Effective equations of motion of radiating scalar source

will be obtained via the consideration of energy-momentum and angular momentum

balance equations. The conservation laws are an immovable fulcrum about which tips

the balance of truth regarding renormalization and radiation reaction. The verification

is not a trivial matter, since the Klein-Gordon field generated by the scalar charge holds

energy near the particle. This circumstance makes the procedure of decomposition of the

Noether quantities into bound and radiative parts unclear.

In [14, 15, 16] Cawley and Marx study the massive scalar radiation from a point

source with a prescribed world line. The authors assume that the particle accelerates

only over a portion of the world line which corresponds to a finite proper time interval.

They evaluate the energy-momentum which flows across a fixed three-dimensional sphere

of large radius R. The radiation part of energy-momentum carried by massive scalar field

was extracted which depends on R explicitly. It casts serious doubt on the validity of

the result. In the present paper we apply a consistent splitting procedure which obeys

the spirit of Dirac scheme of decomposition of electromagnetic potential into singular

(symmetric) and regular (radiative) components [2].

Recently [17], Quinn has obtained an expression for the self-force on a point-like

particle coupled to a massless scalar field arbitrarily moving in a curved spacetime. It is

worth noting that in curved background massless waves propagate not just at speed of

light, but at all speeds smaller than or equal to the speed of light. (It can be understood as

the result of interaction between the radiation and the spacetime curvature.) Therefore,

the particle may “fill” its own field, which will act on it just like an external field. In [18]

2 In the present paper we shall not identify neither fields nor sources with any currently known particles.
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Quinn establishes that the total work done by the scalar self-force matches the amount

of energy radiated away by the particle.

Using Quinn’s general expression, Pfenning and Poisson [19] calculate the self-force

experienced by a point scalar charge moving in a weakly curved spacetime. It is char-

acterized by a generic Newtonian potential Φ which determines the small deviation of

the metric gαβ with respect to the Minkowski values ηαβ = diag(−1, 1, 1, 1). Potential Φ

behaves as −M/r at large distances r from the bounded mass distribution of total mass

M . In contrast to the electromagnetic case, the equations of motion of scalar charge

does not provide conservation of the rest mass (see also [17, 18]). In Refs.[20, 21] this

phenomenon is studied for various kinds of cosmological spacetimes.

In this paper we consider the radiation reaction problem for a point particle that acts

as a source for a massive scalar field in Minkowski spacetime. It is organized as follows.

In Section 2. we recall the Green’s functions associated with the Klein-Gordon wave equa-

tion. Convolving them with the point-like source, we derive the retarded scalar potential

and field strengths as well as their advanced counterparts. In Section 3. we decompose

the momentum 4-vector carried by massive scalar field into singular and regular parts.

All diverging terms have disappeared into the procedure of mass renormalization while

radiative terms survive. In analogous way we analyze the angular momentum of the

Klein-Gordon scalar field. The radiative parts of Noether quantities carried by field and

already renormalized particle’s individual momentum and angular momentum constitute

the total energy-momentum and total angular momentum of our particle plus field sys-

tem. In Section 4. we derive the effective equations of motion of radiating scalar charge

via analysis of balance equations. We show that it coincides with the Harish-Chandra

equation [4]. In Section 4. we discuss the result and its implications.

2. Scalar Potential and Field Strengths of A Point-Like Scalar

Charge

The dynamics of a point-like charge coupled to massive scalar field is governed by the

action [22, 23]

Itotal = Ipart + Iint + Ifield. (1)

Here

Ifield = − 1

8π

∫
d4y

(
ηαβϕαϕβ + k2

0ϕ
2
)

(2)

is an action functional for a massive scalar field ϕ in flat spacetime. We shall use the

metric tensor ηαβ = diag(−1, 1, 1, 1) and its inverse ηαβ = diag(−1, 1, 1, 1) to raise and

lower indices, respectively. The mass parameter k0 is a constant with the dimension

of reciprocal length. The integration is performed over all the spacetime. The particle

action is

Ipart = −m0

∫
dτ
√
−ż2 (3)

where m0 is the bare mass of the particle which moves on a world line ζ : R → M 4

described by relations zα(τ) which give the particle’s coordinates as functions of proper



214 Electronic Journal of Theoretical Physics 6, No. 20 (2009) 211–228

time; żα(τ) = dzα(τ)/dτ . Finally, the interaction term is given by

Iint = g

∫
dτ
√
−ż2ϕ(z) (4)

where g is scalar charge carried by a four-dimensional Dirac distribution supported on ζ :

charge’s density is zero everywhere, except at the particle’s position where it is infinite.

The action (1) is invariant under infinitesimal transformations (translations and ro-

tations) which constitute the Poincaré group. According to Noether’s theorem, these

symmetry properties yield conservation laws, i.e. those quantities that do not change

with time.

Variation on field variable ϕ of action (1) yields the Klein-Gordon wave equation(

− k2

0

)
ϕ(y) = −4πρ(y), (5)

where 
 = ηαβ∂α∂β is the D’Alembert operator. We consider a scalar field satisfying

eq.(5) in Minkowski spacetime with a point particle source

ρ(y) = g

∫ +∞

−∞
dτδ(4)(y − z(τ)). (6)

A solution to eq.(5) can be expressed as

ϕ(y) =

∫
d4xG(y, x)ρ(x). (7)

The relevant wave equation for the Green’s function G(y, x) is(

− k2

0

)
G(y, x) = −4πδ(4)(y − x), (8)

where δ(4)(y − x) is a four-dimensional Dirac functional in M4. The retarded Green’s

function [1, 22, 23]

Gret(y, x) = θ(y0 − x0)

[
δ(σ)− k0√

−2σ
J1(k0

√
−2σ)θ(−σ)

]
(9)

consists of singular part (this proportional to δ(σ)) and smooth part (that proportional

to θ(−σ)). The former possesses support only on the past light cone of the field point y

while the latter represents a function supported within the past light cone of y. By σ we

denote Synge’s world function in flat space-time [23]

σ(y, x) =
1

2
ηαβ(yα − xα)(yβ − xβ) (10)

which is equal to half of the squared length of the geodesic connecting two points in M4,

namely “base point” x and “field point” y. θ(y0 − x0) is step function defined to be one

if y0 > x0, and defined to be zero otherwise, so that Gret(y, x) vanishes in the past of

x. θ(−σ) is the step function of −σ(y, x) and J1 is the first order Bessel’s function of

k0

√
−2σ.
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We substitute eq.(6) for the scalar density ρ(x) in the right-hand side of eq.(7). Mas-

sive scalar waves propagate at all speeds smaller than or equal to the speed of light. Hence

the retarded potential at each point y of Minkowski space M4 consists of a local term as

well as non-local one. The local term is evaluated at the retarded instant τ ret(y) which

is determined by the intersection of the world line with the past cone of the field point y.

The non-local term defines contribution from cone’s interior. It reflect the circumstance

that the retarded field at y is generated also by the point source during its history prior

τ ret(y).

Convolving the retarded Green’s function (9) with the charge density (6) we construct

the massive scalar field [4, 5, 23]:

ϕret(y) =
g

r
− g

τ ret(y)∫
−∞

dτ
k0J1[k0

√
−(K ·K)]√

−(K ·K)
(11)

where J1 is the first order Bessel’s function of k0

√
−2σ which is rewritten as k0

√
−(K ·K).

By Kμ = yμ − zμ(τ) we denote the unique timelike (or null) vector pointing from the

emission point z(τ) ∈ ζ to a field point y ∈M4. The upper limit of the integral is the root

of algebraic equation σ(y, z(τ)) = 0 which satisfies causality condition y0 − z0(τ ret) > 0.

By r we mean the retarded distance

r(y) = −ηαβ(yα − zα(τ ret))uβ(τ ret). (12)

Because the speed of light is set to unity, it is also the spatial distance between z(τ ret) and

y as measured in this momentarily comoving Lorentz frame where 4-velocity uβ(τ ret) =

(1, 0, 0, 0).

Scalar field strengths are given by the gradient of the potential (11). Let us differ-

entiate the local term. Because y and z(τ ret) are linked by the light-cone mapping, a

change of field point y generally comes with a change τ ret. Suppose that y is displaced to

the new field point y + δy. The new emission point z(τ ret + δτ ret) satisfies the algebraic

equation σ(y + δy, z(τ ret + δτ ret)) = 0. Expanding this to the first order of infinitesimal

displacements δy and δτ ret, we obtain Kαδyα + rδτ ret = 0, or

∂τ ret

∂yα
= −Kα

r(y)
. (13)

This relation allows us to differentiate the retarded distance (12) in the local Coulomb-like

term involved in eq.(11).

Now we differentiate the non-local term in the potential (11). Apart from the integral

f (θ)
μ = g

τ ret(y)∫
−∞

dτk2
0

d

dΞ

(
J1(Ξ)

Ξ

)
k0

Kμ√
−(K ·K)

(14)

the gradient ftail,μ = f
(θ)
μ + f

(δ)
μ contains also local term

f (δ)
μ = gk2

0

J1(Ξ)

Ξ

Kμ

r

∣∣∣∣
τ=τ ret

(15)
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which is due to time-dependent upper limit of integral in eq.(11). Because of asymptotic

behaviour of the first order Bessel’s function with argument Ξ := k0

√
−(K ·K) the local

term f
(δ)
μ is finite on the light cone where Ξ = 0. It diverges on the particle’s trajectory

only.

To simplify the non-local contribution us much us possible we use the identity

k0√
−(K ·K)

=
1

(K · u)

dΞ

dτ
(16)

in the integral (14) and perform integration by parts. On rearrangement, we add it to

the expression (15). The term which depends on the end points only annuls f
(δ)
μ . Finally,

the gradient of potential (11) becomes

∂ϕret(y)

∂yμ
= −g

1 + (K · a)

r3
Kμ + g

uμ

r2
+ g

τ ret(y)∫
−∞

dτk2
0

J1(Ξ)

Ξ

[
1 + (K · a)

r2
Kμ −

uμ

r

]
(17)

where Ξ := k0

√
−(K ·K). As it is in the potential itself, particle’s position, velocity,

and acceleration in the local part are referred to the retarded instant τ ret(y) while ones

under the integral sign are evaluated at instant τ ≤ τ ret(y). The non-local part arises

from source contributions interior to the light cone. This part of field is called the “tail

term”. The invariant quantity

r = −(K · u) (18)

is an affine parameter on the time-like (null) geodesic that links y to z(τ); it can be

loosely interpreted as the time delay between y and z(τ) as measured by an observer

moving with the particle.

The advanced Green’s function is non-zero in the past of emission point x:

Gadv(y, x) = θ(−y0 + x0)

[
δ(σ)− k0√

−2σ
J1(k0

√
−2σ)θ(−σ)

]
. (19)

The advanced force

∂ϕadv(y)

∂yμ
= −g

1 + (K · a)

r3
Kμ + g

uμ

r2
+ g

+∞∫
τadv(y)

dτk2
0

J1(Ξ)

Ξ

[
1 + (K · a)

r2
Kμ −

uμ

r

]
(20)

is generated by the point charge during its entire future history following the advanced

time associated with y. Particle’s characteristics in the local part are referred to the

instant τ adv(y).

3. Bound and Radiative Parts of Noether Quantities

In this Section we decompose the energy-momentum and angular momentum carried by

massive scalar field into the bound and radiative parts. The bound terms will be absorbed
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by particle’s individual characteristics while the radiative terms exert the radiation reac-

tion. We do not calculate the flows of the massive scalar field across a thin tube around

a world line of the source. To extract the appropriate finite parts of energy-momentum

and angular momentum we apply the scheme developed in Refs.[24, 25]. In these papers

the radiation reaction problem for an electric charge moving in flat spacetime of three

dimensions is considered. A specific feature of 2 + 1 electrodynamics is that both the

electromagnetic potential and electromagnetic field are non-local: they depend not only

on the current state of motion of the particle, but also on its past (or future) history. The

scalar potential (11) as well as the scalar field strengths (17) and (20) behave analogously.

Decomposition of Noether quantities into bound and radiative components satisfies

the following conditions [24, 25]:

• proper non-accelerating limit of singular and regular parts;

• proper short-distance behaviour of regular part;

• Poincaré invariance and reparametrization invariance.

The first point means that in specific case of rectilinear uniform motion regular parts

should vanish because of non-accelerating charge does not radiate. By “proper short-

distance behaviour” we mean the finiteness of integrand near the coincidence limit where

point of emission placed on the world line tends to the field point which also lies on ζ .

(The bound parts of non-local conserved quantities in 2 + 1 electrodynamics contain one

integration over the world line while radiative ones are integrated over ζ twice.)

The scalar potential (11) and the scalar field strengths (17) and (20) contain local

terms as well as non-local ones. Local part of energy-momentum carried by massive scalar

field is obtained in [4, 5, 26]. It is equal to one-half of the well-known Larmor rate of

radiation integrated over the world line:

pμ
loc,R =

g2

3

∫ τ

−∞
dsa2(s)uμ(s). (21)

Similarly, the local part of radiated angular momentum is equal to the one-half of corre-

sponding quantity in classical electrodynamics [27]:

Mμν
loc,R =

g2

3

∫ τ

−∞
dsa2

s [zμ
s uν

s − zν
s uμ

s ] +
g2

3

∫ τ

−∞
ds [uμ

sa
ν
s − uν

sa
μ
s ] . (22)

There are singular terms associated with the Coulomb-like potential taken on particle’s

world line (see A, eq.(A.8)). Inevitable infinity is absorbed by “bare” mass within the

renormalization procedure.

To find the “tail” parts of radiated Noether quantities sourced by the interior of the

light cone we deal with the field defined on the world line only. Following the scheme

presented in [24, 25] we build our construction upon the tail part of the field strengths

(17) evaluated at point z(τ1) ∈ ζ :

f ret
tail,μ =

∂ϕret
tail(y)

∂yμ

∣∣∣∣
y=z(τ1)

(23)

= g

∫ τ1

−∞
dτ2k

2
0

J1(ξ)

ξ

[
1 + (q · a2)

r2
2

qμ −
u2,μ

r2

]
.
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Here qμ = zμ
1 − zμ

2 defines the unique timelike 4-vector pointing from an emission point

z(τ2) ∈ ζ to a field point z(τ1) ∈ ζ . Index 1 indicates that particle’s position, velocity, or

acceleration is referred to the instant τ1 ∈]−∞, τ ] while index 2 says that the particle’s

characteristics are evaluated at instant τ2 ≤ τ1. We use the notations ξ = k0

√
−(q · q)

and r2 = −(q · u2).

Next we consider the “advanced” counterpart of the expression (23):

f adv
tail,μ = g

∫ τ

τ1

dτ2k
2
0

J1(ξ)

ξ

[
1 + (q · a2)

r2
2

qμ −
u2,μ

r2

]
. (24)

It is intimately connected with the gradient of ϕadv
tail (y) evaluated at point y = z(τ1).

Note that the advanced force (20) is generated by the point charge during its entire

future history. In (24) the domain of integration is the portion of the world line which

corresponds to the interval τ2 ∈ [τ1, τ ] where τ is the so-called “instant of observation”.

This instant arise naturally in [24, 25] where an interference of outgoing waves at the

plane of constant value of y0 is investigated. Its role is elucidated in [24, Figs.2-4] and

[25, Figs.1,2].

We postulate that non-local part of energy-momentum carried by outgoing radiation

is one-half of work done by the retarded tail force minus one-half of work performed by

the advanced one, taken with opposite sign:

pR
tail,μ = −g

2

(∫ τ

−∞
dτ1f

ret
tail,μ −

∫ τ

−∞
dτ1f

adv
tail,μ

)
. (25)

It is obvious that the “advanced” domain of integration,
∫ τ

−∞ dτ1

∫ τ

τ1
dτ2, is equivalent

to
∫ τ

−∞ dτ2

∫ τ2
−∞ dτ1. It can be replaced by the “retarded” one,

∫ τ

−∞ dτ1

∫ τ1
−∞ dτ2, via in-

terchanging of indices “first” and “second” in the integrand. The “tail” part of energy-

momentum carried by outgoing radiation becomes

pμ
tail,R =

g2

2

∫ τ

−∞
dτ1

∫ τ1

−∞
dτ2k

2
0

J1(ξ)

ξ

[
−1 + (q · a2)

r2
2

qμ +
uμ

2

r2
− 1− (q · a1)

r2
1

qμ +
uμ

1

r1

]
(26)

where ra = −(q · ua). It is noteworthy that all the moments are before the observation

instant τ , and the retarded causality is not violated.

In the specific case of a uniformly moving source qμ = uμ(τ1 − τ2) and ra = τ1 − τ2

for both a = 1 and a = 2. Hence the bracketed integrands in eq. (26) is identically equal

to zero. The local parts of radiation (21) and (22) vanish if uμ = const. As could be

expected, nonaccelerating scalar charge does not radiate.

Now we evaluate the short-distance behaviour of the expression under the double

integrals in eq.(26). Let τ1 be fixed and τ1−τ2 := Δ be a small parameter. With a degree

of accuracy sufficient for our purposes√
−(q · q) = Δ (27)

qμ = Δ

[
uμ

1 − aμ
1

Δ

2
+ ȧμ

1

Δ2

6

]
uμ

2 = uμ
1 − aμ

1Δ + ȧμ
1

Δ2

2
.
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Substituting these into integrands of the double integrals of eq.(26) and passing to the

limit Δ → 0 yields vanishing expression. Hence the subscript “R” stands for “regular”

as well as for “radiative”.

In analogous way we construct the non-local part of radiated angular momentum.

First of all we introduce the torque of the retarded tail force (23) and its advanced

counterpart:

mret
tail,μν = z1,μf ret

tail,ν − z1,νf
ret
tail,μ, madv

tail,μν = z1,μf adv
tail,ν − z1,νf

adv
tail,μ. (28)

The desired expression is equal to the one-half of integral of mret
tail,μν over the world line up

to observation instant τ minus one-half of integral of madv
tail,μν , taken with opposite sign:

Mμν
tail,R =

g2

2

∫ τ

−∞
dτ1

∫ τ1

−∞
dτ2k

2
0

J1(ξ)

ξ

[
1 + (q · a2)

r2
2

(zμ
1 zν

2 − zν
1zμ

2 ) +
zμ
1 uν

2 − zν
1uμ

2

r2

+
1− (q · a1)

r2
1

(zμ
1 zν

2 − zν
1zμ

2 ) +
zμ
2 uν

1 − zν
2uμ

1

r1

]
. (29)

In the specific case of constant velocity this expression vanishes. Substituting eqs.(27) in

the integrand passing to the limit Δ→ 0 leads to zero.

We postulate that bound part of energy-momentum carried by non-local part of mas-

sive scalar field is one-half of sum of work done by the retarded and the advanced tail

forces:

pS
tail,μ(τ) = −g

2

(∫ τ

−∞
dτ1f

ret
tail,μ +

∫ τ

−∞
dτ1f

adv
tail,μ

)
(30)

= −g2

2

∫ τ

−∞
dsk2

0

J1(ξ)

ξ

qμ(τ, s)

rτ
.

The bound part of angular momentum also contains only one integration over the frag-

ment of particle’s world line:

MS
tail,μν(τ) = −g

2

(∫ τ

−∞
dτ1m

ret
tail,μν +

∫ τ

−∞
dτ1m

adv
tail,μν

)
(31)

=
g2

2

∫ τ

−∞
dsk2

0

J1(ξ)

ξ

zτ,μzs,ν − zτ,νzs,μ

rτ
.

Here index τ indicates that particle’s position, velocity, or acceleration is referred to the

observation instant τ while index s says that the particle’s characteristics are evaluated

at instant s ≤ τ . We denote rτ = −(q · uτ ).

If uμ = const that ξ = k0(τ − s) and qμ/rτ = uμ. Since∫ τ

−∞
ds

J1[k0(τ − s)]

τ − s
= 1, (32)

the field generated by a uniformly moving charge contributes an amount pμ
tail,S = −1/2g2k0u

μ

to its energy-momentum. This finding is in line with that of Appendix A where is estab-

lished that if the particle is permanently at rest, the scalar meson field adds −1/2g2k0
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to its energy. The bound angular momentum is Mμν
tail,S = zμ

0 pν
tail,S − zν

0pμ
tail,S in case of

uniform motion. We suppose, that the bound parts (30) and (31) of energy-momentum

and angular momentum, respectively, are permanently “attached” to the charge and are

carried along with it. It is worth noting that they possess the proper short-distance

behaviour and, therefore, do not diverge. The “local” Coulomb-like infinity is the only

divergency stemming from the pointness of the source.

There is one more question to be answered: is the choice of the force (23) the only

one? If not there exists an alternative expression for radiated energy-momentum. It

is interesting to apply our decomposition procedure to the massive scalar field as it is

described in Refs.[14, 15, 16]. Cawley and Marx [14] remove the local Coulomb-like

term from the retarded scalar potential. Using the recurrent relation J1(Ξ) = −dJ0/dΞ

between Bessel’s function of order zero and of order one in eq.(11) yields

ϕret(y) = g

τ ret(y)∫
−∞

dτJ0(Ξ)
1 + (K · a)

r2
(33)

after integration by parts. The authors state that the Klein-Gordon source does not em-

anate massless radiation. Following their approach, we rewrite the scalar field strengths

(17) as follows:

∂ϕret(y)

∂yμ
= g

τ ret(y)∫
−∞

dτJ0(Ξ)

{
−3

[1 + (K · a)]2

r4
Kμ −

(K · ȧ)

r3
Kμ + 3

1 + (K · a)

r3
uμ +

aμ

r2

}
.

(34)

Putting the field point z(τ1) ∈ ζ and the emission point z(τ2) ∈ ζ , we obtain the scalar

self-field:

F ret
μ = g

τ1∫
−∞

dτ2J0(ξ)

{
−3

[1 + (q · a2)]
2

r4
2

qμ −
(q · ȧ2)

r3
2

qμ + 3
1 + (q · a2)

r3
2

u2,μ +
a2,μ

r2
2

}
. (35)

Similarly one can construct its “advanced” counterpart which is generated by the point

source during its history after τ1 up to the observation instant τ .

Our next task is to extract the radiation part of energy-momentum carried by Cawley’s

scalar field (33). Since the radiation does not propagate with the speed of light, the

Larmor-like term (21) does not appear. The tail contribution to the radiation

pR
μ = −g

2

(∫ τ

−∞
dτ1F

ret
μ −

∫ τ

−∞
dτ1F

adv
μ

)
(36)

= −g2

2

∫ τ

−∞
dτ1

∫ τ1

−∞
dτ2k

2
0J0(ξ)

{
−3

[1 + (q · a2)]
2

r4
2

qμ −
(q · ȧ2)

r3
2

qμ

+3
1 + (q · a2)

r3
2

u2,μ +
a2,μ

r2
2

−
[
3
[1− (q · a1)]

2

r4
1

qμ +
(q · ȧ1)

r3
1

qμ

−3
1− (q · a1)

r3
1

u1,μ +
a1,μ

r2
1

]}
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is meaningful only. Let us study the short-distance behaviour. Having inserted the

relations (27), we see that the double integral is ill defined because the integrand diverges

at the edge τ2 = τ1 of the integration domain Dτ = {(τ1, τ2) ∈ R 2 : τ1 ∈]−∞, τ ], τ2 ≤ τ1}.
It is because the Coulomb-like divergency moves under the integral sign (cf. eqs.(11) and

(33)).

In the following Section we check the formula (26) and (29) via analysis of energy-

momentum and angular momentum balance equations. Analogous equations yield correct

equation of motion of radiating charge in conventional 3+1 electrodynamics [28, 29] as

well as in six dimensions [30]. It is reasonable to expect that conservation laws result

correct equation of motion of point-like source coupled with massive scalar field where

radiation back reaction is taken into account.

4. Equation of Motion of Radiating Charge

The equation of motion of radiating pole of massive scalar field was derived by Harish-

Chandra [4] in 1946. (An alternative derivation was produced by Havas and Crownfield

in [13].) Following the method of Dirac [2], Harish-Chandra enclosed the world line of the

particle by a narrow tube, the radius of which will in the end be made to tend to zero.

The author calculates the flow of energy and momentum out of the portion of the tube in

presence of an external field. The condition was imposed that the flow depends only on

the states at the two ends of the tube (the so-called “inflow theorem”, see [31, 3]). After

integration over the tube along the world line and a limiting procedure, the equation of

motion was derived. In our notation it looks as follows:

m0a
μ
τ −

g2

3

(
ȧμ

τ − a2
τu

μ
τ

)
− g2

2
k2

0u
μ
τ + g2

∫ τ

−∞
dsk4

0

J2(ξ)

ξ2
qμ + g2 d

dτ

(
uμ

τ

∫ τ

−∞
dsk2

0

J1(ξ)

ξ

)
= gημα∂ϕext

∂zα
+ g

d

dτ
(uμ

τ ϕext) (37)

where m0 is an arbitrary constant identified with the mass of the particle and ϕext is the

scalar potential of the external field evaluated at the current position of the particle. J2(ξ)

is the second order Bessel’s function. In this Section the Harish-Chandra equation will be

obtained via analysis of energy-momentum and angular momentum balance equations.

In previous Section we introduce the radiative part pR = ploc,R + ptail,R of energy-

momentum carried by the field. We proclaim that it alone exerts a force on the parti-

cle. We assume that the bound part, pS, is absorbed by particle’s 4-momentum so that

“dressed” charged particle would not undergo any additional radiation reaction. Already

renormalized particle’s individual three-momentum, say ppart, together with pR constitute

the total energy-momentum of our composite particle plus field system: P = ppart + pR.

We suppose that the gradient of the external potential matches the change of P with
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time:

ṗμ
part(τ) = −ṗμ

R + gημα∂ϕext

∂zα
(38)

= −g2

3
a2(τ)uμ

τ +
g2

2

∫ τ

−∞
dsk2

0

J1(ξ)

ξ

[
1 + (q · as)

r2
s

qμ − uμ
s

rs
+

1− (q · aτ )

r2
τ

qμ − uμ
τ

rτ

]
+ gημα∂ϕext

∂zα
.

The overdot means the derivation with respect to proper time τ .

Our next task is to derive expression which explain how three-momentum of “dressed”

charged particle depends on its individual characteristics (velocity, position, mass etc.).

We do not make any assumptions about the particle structure, its charge distribution

and its size. We only assume that the particle 4-momentum ppart is finite. To find out

the desired expression we analyze conserved quantities corresponding to the invariance

of the theory under proper homogeneous Lorentz transformations. The total angular

momentum, say M , consists of particle’s angular momentum z ∧ ppart and radiative part

of angular momentum carried by massive scalar field:

Mμν = zμ
τ pν

part(τ)− zν
τ pμ

part(τ) + Mμν
R (τ). (39)

We assume that the torque zμ
τ ∂νϕext−zν

τ ∂μϕext of the potential external force matches

the change of M with time. Having differentiated (39) where the radiated angular mo-

mentum Mμν
R = Mμν

R,loc +Mμν
R,tail is determined by eqs.(22) and (29), and inserting eq.(38)

we arrive at the equality

uτ ∧
(

ppart +
g2

3
aτ +

g2

2

∫ τ

−∞
dsk2

0

J1(ξ)

ξ

q

rτ

)
= 0. (40)

Apart from usual velocity term, the 4-momentum of “dressed” particle contains also a

contribution from field:

pμ
part = muμ

τ −
g2

3
aμ

τ −
g2

2

∫ τ

−∞
dsk2

0

J1(ξ)

ξ

qμ

rτ

. (41)

The local part is the scalar analog of Teitelboim’s expression [32] for individual 4-

momentum of a “dressed” electric charge in conventional electrodynamics. The integral

term is then nothing but the bound part (30) of energy-momentum carried by the massive

scalar field.

The expression for the scalar function m(τ) is find in B via analysis of differential

consequences of conservation laws. We derive that already renormalized dynamical mass

m depends on particle’s evolution before the observation instant τ :

m = m0 + g2

∫ τ

−∞
dsk2

0

J1[ξ(τ, s)]

ξ(τ, s)
− gϕext. (42)

The constant m0 can be identified with the renormalization constant in action (3) which

absorbs Coulomb-like divergence stemming from local part of potential (11). It is of great
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importance that the dynamical mass, m, will vary with time: the particle will necessarily

gain or lost its mass as a result of interactions with its own field as well as with the

external one. The field of a uniformly moving charge contributes an amount g2k0 to its

inertial mass.

To derive the effective equation of motion of radiating charge we replace ṗμ
part in

left-hand side of eq.(38) by differential consequence of eq.(41). We apply the formula

∂

∂τ

∫ τ

−∞
dsf(τ, s) =

∫ τ

−∞
ds

(
∂f

∂τ
+

∂f

∂s

)
. (43)

At the end of a straightforward calculations, we obtain

maμ
τ +ṁuμ

τ =
g2

3

(
ȧμ

τ − a2
τu

μ
τ

)
+g2

∫ τ

−∞
dsk2

0

J1(ξ)

ξ

[
1 + (q · as)

r2
s

qμ − uμ
s

rs

]
+gημα∂ϕext

∂zα
(44)

where dynamical mass m(τ) is defined by eq.(42). The local part of the self-force is

one-half of well-known Abraham radiation reaction vector while the non-local one is then

nothing but the tail part of particle’s scalar field strengths (17) acting upon itself (see

eq.(23)). Indeed, since the massive field does not propagate with the velocity of light,

the charge may “fill” its own field, which will act on it just like an external field.

Now we compare this effective equation of motion with the Harish-Chandra equation

(37). The latter can be simplified substantially. Having used the recurrent relation

J2(ξ) =
J1(ξ)

ξ
− dJ1(ξ)

dξ
(45)

between Bessel functions of order two and of order one, after integration by parts we

obtain

g2

∫ τ

−∞
dsk4

0

J2(ξ)

ξ2
qμ =

g2

2
k2

0u
μ
τ − g2

∫ τ

−∞
dsk2

0

J1(ξ)

ξ

[
1 + (q · as)

r2
s

qμ − uμ
s

rs

]
. (46)

We also collect all the total time derivatives involved in Harish-Chandra equation (37).

The term m(τ)uμ
τ arises under the time derivative operator, where time-dependent func-

tion m(τ) is then nothing but the dynamical mass (42) of the particle. On rearrangement,

the Harish-Chandra equation of motion (37) coincides with the equation (44) which is

obtained via analysis of balance equations. It is in favour of the renormalization scheme

for non-local theories developed in [24, 25].

To clear physical sense of the effective equation of motion (44) we move the velocity

term ṁuμ
τ to the right-hand side of this equation:

m(τ)aμ
τ =

g2

3

(
ȧμ

τ − a2
τu

μ
τ

)
+ fμ

self + fμ
ext. (47)

According to [22], the scalar potential produces the Minkowski force

fμ
ext = g (ημα + uμ

τ u
α
τ )

∂ϕext

∂zα
(48)
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which is orthogonal to the particle’s 4-velocity. The self-force

fμ
self = g2

∫ τ

−∞
dsk2

0

J1(ξ)

ξ

[
1 + (q · as)

r2
s

(qμ − rτu
μ
τ )−

uμ
s + (us · uτ )u

μ
τ

rs

]
(49)

is constructed analogously from the tail part of gradient (17) of particle’s own field (11)

supported on the world line ζ . The own field contributes also to particle’s inertial mass

m(τ) defined by eq.(42).

Conclusions

In the present paper, we find the radiative parts of energy-momentum and angular mo-

mentum carried by massive scalar field coupled to a point-like source. Scrupulous anal-

ysis of energy-momentum and angular momentum balance equations yields the Harish-

Chandra equation of motion of radiating scalar pole. This equation includes the effect of

particle’s own field as well as the influence of an external force.

To remove divergences stemming from the pointness of the particle we apply the regu-

larization scheme originally developed for the case of electrodynamics in flat spacetime of

three dimensions [24, 25]. It summarizes a scrupulous analysis of energy-momentum and

angular momentum carried by non-local electromagnetic field of a point electric charge.

The simple rule allows us to identify that portion of the radiation which arises from source

contributions interior to the light cone.

Energy-momentum and angular momentum balance equations for radiating scalar

pole constitute system of ten linear algebraic equations in variables pμ
part(τ) and their first

time derivatives ṗμ
part(τ) as the functions of particle’s individual characteristics (velocity,

acceleration, charge etc.). The system is degenerate, so that solution for particle’s 4-

momentum includes arbitrary scalar function, m(τ), which can be identified with the

dynamical mass of the particle. Besides renormalization constant, the mass includes

contributions from particle’s own field as well as from an external field.

This is a special feature of the self force problem for a scalar charge. Indeed, the

time-varying mass arises also in the radiation reaction for a pointlike particle coupled

to a massless scalar field on a curved background [17]. The phenomenon of mass loss

by scalar charge is studied in [20, 21]. Similar phenomenon occurs in the theory which

describe a point-like charge coupled with massless scalar field in flat spacetime of three

dimensions [33]. The charge loses its mass through the emission of monopole radiation.

A Energy-momentum of the scalar massive field of uniformly

moving particle

The simplest scalar field is generated by an unmoved source placed at the coordinate

origin. Setting z = (t, 0, 0, 0) and u = (1, 0, 0, 0) in eq.(33), one can derive the static

potential [1, 14]:

ϕ(y) = g
exp(−k0r)

r
(A.1)
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where r =
√

(y1)2 + (y2)2 + (y3)2 is the distance to the charge. It is the well-known

Yukawa field.

In this Appendix we calculate the energy-momentum

pν
sc(τ) =

∫
Σ

dσμT μν (A.2)

carried by the scalar massive field due to a uniformly moving pointlike source g. The

stress-energy tensor T̂ is given by [14, 15, 16]

4πTμν =
∂ϕ

∂yμ

∂ϕ

∂yν
− ημν

2

(
ηαβ ∂ϕ

∂yα

∂ϕ

∂yβ
+ k2

0ϕ
2

)
(A.3)

and Σ is an arbitrary space-like three-surface.

It is convenient to choose the simplest plane Σt = {y ∈ M 4 : y0 = t} associated with

unmoving observer. We start with the spherical coordinates

y0 = s + r, yi = rni (A.4)

where ni = (cosφ sin θ, sin φ sin θ, cos θ) and s is the parameter of evolution. To adopt

them to the integration surface Σt we replace the radius r by the expression t − s. On

rearrangement, the final coordinate transformation (y0, y1, y2, y3) $→ (t, s, φ, θ) looks as

follows:

y0 = t, yi = (t− s)ni. (A.5)

The surface element is given by

dσ0 = (t− s)2dsdΩ (A.6)

where dΩ = sin θdθdφ is an element of solid angle.

After trivial calculation one can derive the only non-trivial component of energy-

momentum (A.2) is

p0
sc =

1

4π

∫ t

−∞
ds(t− s)2

∫
dΩ

1

2

[∑
i

(
∂ϕ

∂yi

)2

+ k2
0ϕ

2

]
(A.7)

=
g2

2

[
k0 exp[−2k0(t− s)] +

k0 exp[−2k0(t− s)]

t− s

]s→t

s→−∞

= lim
ε→0

g2

2ε
− g2

2
k0

where ε is positively valued small parameter.

Having performed Poincaré transformation, the combination of translation and Lorentz

transformation, we find the energy-momentum carried by massive scalar field of uniformly

moving charge:

pμ
sc = lim

ε→0

g2

2ε
uμ − g2

2
k0u

μ. (A.8)

The divergent Coulomb-like term is absorbed by the “bare” mass m0 involved in action

integral (1) while the finite term contributes to the particle’s individual 4-momentum

(41).
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B Derivation of the dynamical mass

The scalar product of particle 4-velocity on the first-order time-derivative of particle

4-momentum (38) is as follows:

(ṗpart · uτ) =
g2

3
a2

τ +
g2

2

∫ τ

−∞
dsk2

0

J1(ξ)

ξ

[
1 + (q · as)

r2
s

(q · uτ )−
(us · uτ)

rs
+

(q · aτ )

rτ

]
+ g

dϕext

dτ
. (B.1)

Since (u · a) = 0, the scalar product of particle acceleration on the particle 4-momentum

(41) does not contain the scalar function m:

(ppart · aτ ) = −g2

3
a2

τ −
g2

2

∫ τ

−∞
dsk2

0

J1(ξ)

ξ

(q · aτ )

rτ
. (B.2)

Summing up (B.1) and (B.2) we obtain the non-local expression:

d

dτ
(ppart · uτ) =

g2

2

∫ τ

−∞
dsk2

0

J1(ξ)

ξ

∂

∂s

[
(q · uτ )

rs

]
+ g

dϕext

dτ
. (B.3)

We rewrite the expression under the integral sign as the following combination of partial

derivatives in time variables:

k2
0

J1(ξ)

ξ

∂

∂s

(
(q · uτ )

rs

)
=

∂

∂s

(
k2

0

J1(ξ)

ξ

(q · uτ)

rs

)
− ∂

∂τ

(
k2

0

J1(ξ)

ξ

)
. (B.4)

This circumstance allows us to integrate the expression (B.3) over τ :

(ppart · uτ ) = −m0 +
g2

2

∫ τ

−∞
dτ1

∫ τ1

−∞
dτ2

[
∂

∂τ2

(
k2

0

J1(ξ)

ξ

(q · u1)

r2

)
− ∂

∂τ1

(
k2

0

J1(ξ)

ξ

)]
+ gϕext

= −m0 −
g2

2

∫ τ

−∞
dsk2

0

J1(ξ(τ, s))

ξ(τ, s)
+ gϕext. (B.5)

To integrate the second term in between the square brackets we substitute
∫ τ

−∞ dτ2

∫ τ

τ2
dτ1

for
∫ τ

−∞ dτ1

∫ τ1
−∞ dτ2. The external potential is referred to the observation instant τ .

Alternatively, the scalar product of 4-momentum (41) and 4-velocity is as follows:

(ppart · uτ ) = −m +
g2

2

∫ τ

−∞
dsk2

0

J1[ξ(τ, s)]

ξ(τ, s)
. (B.6)

Having compared these expressions we obtain:

m = m0 + g2

∫ τ

−∞
dsk2

0

J1[ξ(τ, s)]

ξ(τ, s)
− gϕext. (B.7)

We suppose that the renormalization constant m0 already absorbs the Coulomb-like in-

finity which arises in eq.(A.8).
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Abstract: We study the Planck scale effects on Jarlskog determiant. Quantum gravitational
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involving neutrino and Higgs fields, which give rise to additional terms in neutrino mass matrix
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1. Introduction

The origin of CP violation is still mystery in particle physics. Recent advance to neutrino

physics observation mainly of astrophysical observation suggested the existence of tiny

neutrino mass. The experiments and observation have shown evidence for neutrino oscil-

lation. The solar neutrino deficit has long been observed [1-4] the atmospheric neutrino

anomaly has been found [5-7] and currently almost confirmed by IMB [8], and hence

indicates that neutrinos are massive and there is mixing in lepton sector. Since there

is a mixing in lepton sector, this indicates to imagine that there occurs CP violation in

lepton sector. Several physicists have considered whether we can see CP violation effect

in lepton sector through long baseline neutrino oscillation experiments. The neutrino os-

cillation probability, in general depends on six parameters two independent mass square

difference Δ21 and Δ31, three mixing angles θ12, θ23, θ13 and one CP violating phase δ.

CP violation arise as three or more generation [9, 10]. CP violation in neutrino

∗ bipiniitb@rediffmail.com, bipiniitb@gmail.com
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oscillation is interesting because it relates directly to CP phase parameter in the mixing

for n > 3 degenerate neutrino. We can write down the compact formula for the difference

of transition probability between conjugate channel.

ΔP (α, β) = P (νμ → νe)− P (ν̄μ → ν̄e), (1)

where

(α, β) = (e, μ), (μ, τ), (τ, e).

The main physical goal in future experiments are the determination of the unknown

parameter θ13 and upper bound sin22θ13 < 0.01 is obtained for the ref [11]. In particular,

the observation of δ is quite interesting for the point of view that δ related to the origin

of the matter in the universe. The determination of δ is the final goal of the future

experiments. We get the analytical expression for ΔP (α, β) using the usual form of the

MNS matrix parametrization [12].

U =

⎛⎜⎜⎜⎜⎝
c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23−s12s13s23e

iδ c23s13

⎞⎟⎟⎟⎟⎠ , (2)

where c and s denoted the cosine and sine of the respective notation, thus ΔP (α, β)

in vacuum can be written as

ΔP (α, β) = 16J (sinΔ21sinΔ32sinΔ31) . (3)

Here α and β denote different neutrino or anti-neutrino flavour

where

Δij = 1.27

(
Δij

eV 2

)(
L

Km

)(
1GeV

E

)
, (4)

Δij = (m2
i −m2

j )is the difference of ith and jth vacuum mass square eigenvalue, E is

the neutrino energy and L is the travel distance and the well known Jarlskog determinant

[13], J is the standard mixing parametrization is given by

J = Im
(
Ue1U

∗
e2U

∗
μ1Uμ2

)
=

1

8
sin2θ12sin2θ23sin2θ13cosθ13sinδ, (5)

and the asymmetry parameter suggested by Cabibbo [14], as an alternative to measure

CP violation in the lepton sector

Acp =
ΔP

P (νμ → νe)− P (ν̄μ → ν̄e),
(6)

The purpose of this paper is to study the Planck scale effects on Jarlskog Determinant.

In Sec-2, we discuss the neutrino mixing angle due to Planck scale effects. In Sec-3, we

give the conclusions.
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2. Neutrino Mixing Angle and Mass Square Differences Above

the GUT Scale

To calculate the effects of perturbation on neutrino observables. The calculation devel-

oped in an earlier paper [15]. A natural assumption is that unperturbed (0th order mass

matrix) is given by

M = U∗diag(Mi)U
†, (7)

where, Uαi is the usual mixing matrix and Mi , the neutrino masses is generated

by Grand unified theory. Most of the parameters related to neutrino oscillation are

known, the major expectation is given by the mixing elements Ue3. We adopt the usual

parameterizations.

|Ue2|
|Ue1|

= tanθ12 (8)

|Uμ3|
|Uτ3|

= tanθ23 (9)

|Ue3| = sinθ13 (10)

In term of the above mixing angles, the mixing matrix is

U = diag(eif1, eif2, eif3)R(θ23)ΔR(θ13)Δ
∗R(θ12)diag(eia1, eia2, 1). (11)

The matrix Δ = diag(e
1δ
2 , 1, e

−iδ
2 ) contains the Dirac phase. This leads to CP violation

in neutrino oscillation a1 and a2 are the so called Majorana phase, which effects the

neutrinoless double beta decay. f1, f2 and f3 are usually absorbed as a part of the

definition of the charge lepton field. Planck scale effects will add other contribution to

the mass matrix that gives the new mixing matrix can be written as [15]

U
′
= U(1 + iδθ),

where δθ is a hermitian matrix that is first order in μ[16,17]. The first order mass

square difference ΔM2
ij = M2

i −M2
j ,get modified [16,17] as

ΔM
′2
ij = ΔM2

ij + 2(MiRe(mii)−MjRe(mjj)). (12)

The change in the elements of the mixing matrix, which we parameterized by δθ[15],

is given by

δθij =
iRe(mjj)(Mi + Mj)− Im(mjj)(Mi −Mj)

ΔM
′2
ij

. (13)

The above equation determines only the off diagonal elements of matrix δθij . The

diagonal element of δθij can be set to zero by phase invariance. Using Eq(12), we can

calculate neutrino mixing angle due to Planck scale effects,
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|U ′
e2|
|U ′

e1|
= tanθ

′
12 (14)

|U ′
μ3|
|U ′

τ3|
= tanθ

′
23 (15)

|U ′
e3| = sinθ

′
13 (16)

As one can see from the above expression of mixing angle due to Planck scale effects,

depends on new contribution of mixing U
′

= U(1 + iδθ). To see the mixing angle due

to Planck scale effects [14,16] only θ13and θ12 mixing angle have small deviation due to

Planck scale effects.

3. Jarlskog Determinant Due to Planck Scale Effects

Note from eq(14), that the correction term depends crucially on the type of neutrino mass

spectrum. For a hierarchical or invert hierarchial spectrum the correction is negligible.

Hence we consider a degenerate neutrino spectrum and take the common neutrino mass

to 2 eV, which is the upper limit from the tritium decay experiment [18]. Let us compute

Jarlskog determiant due to new mixing due to Planck scale effects

J
′
= Im

(
U

′
e1U

′∗
e2U

′∗
μ1U

′
μ2

)
= Im((Ue1 + i(Ue2δθ

∗
12 + Ue3δθ13))((Ue2 − i(U∗e1δθ

∗
12 + U∗e3δθ13))

((U∗μ1 − i(Uμ2δθ12 + Uμ3δθ13))((Uμ2 + i(Uμ1δθ12 + Uμ3δθ
∗
23) (17)

We simplified Jarlskog determiant due to new mixing matrix

J
′
= Im

(
Ue1U

∗
e2U

∗
μ1Uμ2

)
+Im(i(Uμ1Uμ2)(|Ue2|2δθ∗12+Ue2Ue3δθ13−|Ue1|2δθ∗12−Ue1U

∗
e3δθ

∗
23)

+Im(i(U∗e1Ue2)(|Uμ1|2δθ12 + U∗μ1Uμ3δθ
∗
23 − |Uμ2|2δθ12 − Uμ2U

∗
μ3δθ13)

= J + ΔJ

In terms of mixing angle, we can write Jarlskog determiant in terms of mixing pa-

rameter due to Planck scale effects

J
′
=

1

8
sin2(θ12 + ε12)sin2(θ23 + ε23)sin2(θ13 + ε13)cos(θ13 + ε13)sinδ, (18)

We define the percentage change in Jarlskog determinant due to Planck scale effects
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P =
J∗

JGUT

× 100 (19)

The Majorana phases a1 and a2 have a non-trivial effect on the Planck scale correc-

tions. We show the results as contour plots of J
′
in the a1 − a2 plane. In our calculation,

we used best fit values of mixing angles, θ12 = 340, θ23 = 45o, θ13 = 10o.We considered

non zero value of CP phase and we took δ = 45o, 90o.

In Fig. 1 and Fig. 3 for θ13 = 10o. For the value, which is the upper limit coming

for CHOOZ experiments, note that there is reasonable range of Majorama phases, where

Jarlskog determinant change 5% only, this change due to two mixing angles. In this paper,

we studied Planck scale effects the Jarlskog determinant. MNS matrix and Jarlskog

detergent, which is signal for CP violation in neutrino oscillation. We have obtained,

due to Planck scale effects, two mixing angle θ12 and θ13 extra contributes to Jarlskog

determinant.
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1. Introduction

A great variety of physical processes belonging to the areas of quantum computation,

condensed matter, atomic and molecular physics [1], nuclear and particle physics [2,

3], can be conveniently studied in terms of two-level quantum systems. In this case,

one of the most interesting effects is represented by the oscillations between the two

energy levels [1], as for example, νe − νμ flavour neutrino oscillations. Most textbooks

of quantum mechanics deal with this problem with a standard methodology [1, 4]. We

propose a pedagogically new, nonperturbative procedure that should allow the students to

understand autonomously and in more detail the previously mentioned two-level physical

∗ mdesanctis@unal.edu.co
† cjquimbayh@unal.edu.co
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processes.

First, in Sect. 2, by using a simple reparametrization of the superposition of two

quantum states, we solve the eigenvalue equation of the problem. We suggest, as an

exercise, to use perturbation theory to derive the approximate eigenvalues when a weak

interaction is considered.

Then, in Sect. 3, by means of the previous results, we easily derive the Rabi equation

that determines the transition amplitude between the two states. At the end of this

Section we make a comparison with the result given by the perturbation theory.

Finally, in Sect. 4, we show that the Hamiltonian operator of the system can be

conveniently written in terms of the Pauli matrices. Then, by means of their properties,

the Rabi equation is directly obtained by applying the time evolution operator of the

system. In this concern, we point out that, pedagogically, the knowledge of the properties

of the Pauli matrices represents a useful and general tool for the study of theoretical

physics.

2. The Eigenvalue Equation

Let us consider a quantum-mechanical system that can be described by the following

total Hamiltonian

Ĥ = Ĥo + Ĥ ′ (1)

Conventionally, Ĥo and Ĥ ′ will be defined respectively as the free and the interaction

Hamiltonian of the system. In the present work we make the hypothesis that the free

system is characterized by the presence of only two accessible eigenstates (normalized to

unity), denoted as |1 > and |2 >, satisfying the standard eigenvalue equation

Ĥo|1 >= E1|1 > , Ĥo|1 >= E2|2 > (2)

where E1 and E2 represent the free energy eigenvalues of the system.

Given that only the two previously introduced states are accessible, we assume that

they represent a complete set of states for the system. (In real cases, it means that we

neglect the coupling with other states). In consequence, we can write the free and the

interaction Hamiltonians in the following form

Ĥo = E1|1 >< 1|+ E2|2 >< 2| , Ĥ ′ = γ[|1 >< 2|+ |2 >< 1|] (3)

The real factor γ represents the strength of the interaction. Note that the expression for

the interaction term Ĥ ′ automatically takes into account the hermiticity of the Hamilto-

nian operator.

Let us now study the complete eigenvalue equation

Ĥ|α >= Eα|α > (4)

where |α >= |a >, |b > and Eα represent respectively the eigenstates and eigenvalues of

the total Hamiltonian Ĥ . These eigenstates |a > and |b > can be written in terms of the
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free eigenstates |1 > and |2 > as

|α >= Cα1|1 > +Cα2|2 > (5)

We first observe that, being the eigenstates |a > and |b > normalized to unity, the

decomposition coefficients must satisfy the following condition

|Cα1|2 + |Cα2|2 = 1 (6)

for α = a, b. In consequence, we can introduce a parametrization of the coefficients Cαi

in terms of two angles θα, that is

Ca1 = cos θa Ca2 = sin θa

Cb1 = cos θb Cb2 = sin θb

(7)

Furthermore, the orthogonality of the two eigenstates, that is < b|a >= 0, with standard

trigonometric handlings, gives

cos(θa − θb) = 0 (8)

that is satisfied by

θb = θa +
π

2
(9)

It means that the coefficients of eq. (7) depend on only one parameter, that is θ = θa, as

Ca1 = cos θ Ca2 = sin θ

Cb1 = − sin θ Cb2 = cos θ
(10)

In consequence, the decomposition of eq. (5) can be syntetically written in the following

matrix form ⎛⎜⎝|a >

|b >

⎞⎟⎠ =

⎛⎜⎝ cos θ sin θ

− sin θ cos θ

⎞⎟⎠
⎛⎜⎝|1 >

|2 >

⎞⎟⎠ (11)

In the special case θ = 0, one has |a >= |1 > and |b >= |2 >.

We now turn to solve the complete eigenvalue equation (4). By means of the decom-

position of eq. (5) and using eq. (3), it takes the form

E1 cos θα|1 > +E2 sin θα|2 > +γ cos θα|2 > +γ sin θα|1 >=

Eα cos θα|1 > +Eα sin θα|2 >
(12)

Then, multiplying by < 1| and < 2|, one obtains the following system of equations⎛⎜⎝E1 −Eα γ

γ E2 − Eα

⎞⎟⎠
⎛⎜⎝cos θα

sin θα

⎞⎟⎠ = 0 (13)
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Solving this system, one finds two eigenvalues corresponding to two orthogonal eigenvec-

tors. We can associate the first solution to Ea, θa and the second one to Eb, θb. Standard

algebra gives

Ea = E1(1 + R)/2 + E2(1−R)/2

Eb = E1(1− R)/2 + E2(1 + R)/2
(14)

with

R =
√

1 + 4γ2/(E1 −E2)2 (15)

Note that the two eigenvalues satisfy the condition Ea + Eb = E1 + E2. Furthermore, if

the interaction is absent, that is γ = 0, one has Ea = E1 , Eb = E2.

As an exercise, the reader can study the case of a weak interaction. Introducing the

adimensional parameter λ = γ/(E1 − E2), one can make a Taylor expansion in powers

of λ for the eigenvalues of eq. (14). In this expansion, the term of order λ0 gives the

free eigenvalues and the first corrective term is of order λ2. The reader should also

calculate the latter term using the time independent perturbation theory, taking Ĥ ′ as

the perturbative operator. In this concern, it is important to note that such term is

obtained at the second order of the perturbation theory, being vanishing the first order

contribution.

Finally, to find the angles θα that parametrize the eigenvectors, we first consider the

equation given by the second line of the matrix in eq. (13). We select α = a and replace

the explicit expression of Ea given by eq. (14). The result is

tan θa = 2γ/[(E1 − E2)(1 + R)] (16)

Then, the angle θb can be easily found by means of the condition (9) and the expression

of the state |b > can be obtained from eq. (11) recalling that θ = θa. As an exercise, the

reader can obtain that result directly from eq. (13).

3. Time Evolution and Rabi Equation

We now turn to study the time evolution of the system. We consider the case in which

the interaction term Ĥ ′ (see eqs. (2) and (3)) is time independent. If at t = 0 the system

is in the state |Ψ(t = 0) >, at the time t the system is in the state

|Ψ(t) >= exp[−iĤt/�]|Ψ(t = 0) > (17)

where Û(t) = exp[−iĤt/�] represents the time evolution operator [4].

Let us suppose that at t = 0 the system is prepared in an eigenstate of the free

Hamiltonian, say, for definiteness, in the state |1 >, so that |Ψ(t = 0) >= |1 >. Inverting

eq. (11), we can also write that state as a superposition of the eigenstates of the total

Hamiltonian, in the form

|Ψ(t = 0) >= |1 >= cos θ|a > − sin θ|b > (18)
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Using eq. (17) its time evolution is

|Ψ(t) >= cos θ exp[−iEat/�]|a > − sin θ exp[−iEbt/�]|b > (19)

Multiplying the previous equation by < 2|, we obtain the probability amplitude of finding

the system (intially in |1 >) in the state |2 > at the time t. We have

< 2|Ψ(t) >= cos θ exp[−iEat/�] < 2|a > − sin θ exp[−iEbt/�] < 2|b > (20)

By means of eq. (11) we know that < 2|a >= sin θ y < 2|b >= cos θ, so that the

transition probability amplitude of eq. (20) can be finally written as

< 2|Û(t)|1 >=< 2|Ψ(t) >= F (θ)G(Ea, Eb) (21)

where

F (θ) = cos θ sin θ G(Ea, Eb) = exp[−iEat/�]− exp[−iEbt/�] (22)

With some algebraic handlings and by using eq. (16), we obtain

F (θ) = tan θ/(tan2 θ + 1) = γ/(2
√

γ2 + (E1 − E2)2/4) (23)

Analogously, if we replace in G(Ea, Eb) the expression (14) for the eigenvalues Ea, Eb,

we find

G(Ea, Eb) = 2i exp[−it(E1 + E2)/2�] sin[t
√

[(E1 − E2)2 + 4γ2]/4�2] (24)

Finally, the transition probability from the state |1 > at t = 0 to the state |2 > at the

time t, is [4]

P12 = | < 2|Û(t)|1 > |2 =
γ2

γ2 + (E1 − E2)2/4
sin2

[√
(E1 − E2)2 + 4γ2

4�2
t

]
(25)

that is the so-called Rabi equation. Note that the transition probability is represented

by an oscillating function of the time.

We now turn to compare the previous result with the prediction of the so-called

time dependent pertubation theory at the first order. We treat the free term Ĥ0 as the

unperturbed Hamiltonian, while the interaction term Ĥ ′ is considered as the perturbation.

One has the following well-known expression [4]

P pert
12 =

4γ2

(E1 −E2)2
sin2

[
(E1 − E2)

2�
t

]
(26)

where from eq. (3) we have taken < 2|Ĥ ′|1 >= γ. By using the adimensional parameter

λ, introduced in the previous section, the reader can easily check that expanding the

exact equation (25) up to the first order in λ2 (that is equivalent to consider the first

order in λ for the amplitude), one obtains the perturbative result of eq. (26).
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4. Use of the Pauli Matrices for the Time Evolution Operator

Given that the Hilbert space for our system is spanned by two independent states, we can

advantageously use the formalism of the Pauli matrices. First, we introduce the spinors⎛⎜⎝1

0

⎞⎟⎠ and

⎛⎜⎝0

1

⎞⎟⎠, to represent the states |1 > and |2 >, respectively. In consequence, with

standard handlings, the total Hamiltonian, by means of eqs.(1) and (3), is written as

Ĥ =

⎛⎜⎝E1 γ

γ E2

⎞⎟⎠ (27)

Given that the identity matrix and three Pauli matrices

1 =

⎛⎜⎝1 0

0 1

⎞⎟⎠ , σ =

⎛⎜⎝0 1

1 0

⎞⎟⎠ ,

⎛⎜⎝0 −i

i 0

⎞⎟⎠ ,

⎛⎜⎝1 0

0 −1

⎞⎟⎠ (28)

form a complete set of matrices in the 2 × 2 space, we can represent the Hamiltonian

matrix (27) in the following way

Ĥ = ho1 + hσ (29)

with

h0 =
1

2
(E1 + E2), h1 = γ, h2 = 0, h3 =

1

2
(E1 − E2) (30)

Recalling that the two eigenvalues of hσ are, in general, ±|h| = ±
√

h2
1 + h2

2 + h2
3, using

eq. (30), the reader can directly find from eq. (29) the eigenvalues of Ĥ obtaining exactly

the same result given in eqs. (14) and (15). We now study, with the formalism of the

Pauli matrices, the time evolution operator, introduced in Sect. 3. It is given by

Û(t) = exp

[
−iĤt

�

]
= exp

[
−it

�
(ho1 + hσ)

]
= exp

[
−it

�
ho1

]
exp

[
−it

�
hσ

]
(31)

In the last expression, the first exponential simply gives a phase factor

exp

[
−it

�
ho1

]
= exp

[
−i

(E1 + E2)

2�
t

]
1 (32)

where we have used the explicit expression of h0.

On the other hand, for the second exponential, an interesting handling is possible.

We expand this term in a Taylor series of hσ. Then, recalling the standard properties of

the powers of the Pauli matrices

(σa)2n = (a2)n, (σa)2n+1 = (a2)nσa (33)
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we can write the time evolution equation (31) in the form

Û(t) = exp

[
−i

(E1 + E2)

2�
t

]
×[ ∞∑

n=0

1

(2n)!
(− t2

�2
h2)n +

∞∑
n=0

1

(2n + 1)!
(−it

�
)2n+1(h2)nhσ)

] (34)

Finally, summing up the two power series we obtain

Û(t) = exp

[
−i

(E1 + E2)

2�
t

] [
cos

(
t|h|
�

)
1− i sin

(
t|h|
�

)
hσ

|h|

]
(35)

We can now easily calculate the transition amplitude from the state |1 >, at the initial

time t = 0, to the state |2 >, at the final time t, making use of the time evolution operator

in the form of eq. (35). This amplitude is given by the matrix element A21 =< 2|Û(t)|1 >,

with the spinorial representation of the states |1 > and |2 > introduced at the beginning

of this section, being Û(t) =

⎛⎜⎝U11(t) U12(t)

U21(t) U22(t)

⎞⎟⎠. The matrix elements of Û(t) are found

by replacing explicitly the Pauli matrices in eq. (35). After some algebraic handlings, we

find that A12 can be put in the same form of eq. (21), that is A12 = F (θ)G(Ea, Eb), so

that the Rabi equation (25) for the transition probability is obtained as in Sect. 3. This

second derivation is recommendable because it is based on the algebraic properties of

the Pauli matrices and on the series expansion of quantum mechanical operators. These

techniques are, in our opinion, of fundamental importance for the study of many other

problems in quantum mechanics.
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1. Introduction

Hamiltonian spin models involving two external non-commuting magnetic fields are being

increasingly studied these days [1, 2, 3]. It is almost always the case that such models

cannot be solved exactly, in the presence of spin interactions. Interaction is usually due

to either nearest neighbour exchange or next nearest neighbour exchange or both. As is

common practice, approximate calculations can be done by first starting with an exactly

solvable model and then introducing the interactions as perturbations. This is done in

this paper. We start by considering the simple model described by the Hamiltonian

H = −hx

N∑
i=1

Sx
i − hz

N∑
i=1

Sz
i , (1)

where Sx
i and Sz

i are spin-1/2 operators on the ith lattice site of a one-dimensional chain

of N particles. hx and hz are the external transverse and longitudinal magnetic fields,

respectively, measured in units where the splitting factor and Bohr magneton are unity.
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It will often be convenient to write

H =
N∑

i=1

Hi ,

where

Hi = −hxS
x
i − hzS

z
i .

The model (1) is exactly solvable and in this work we will obtain all the energy levels

and the corresponding states. The main import of the result will be that interactions can

be included as perturbations on the model (1), this approach being effective in obtaining

accurate results for models incorporating two external fields.

2. The One-particle Model

Since the N spin-1/2 particles described by (1) are non-interacting, all results can be

obtained from the Hamiltonian for a single particle. We drop the site subscripts in (1)

and write Hε for the one spin system and write

Hε = −hxS
x − hzS

z ,

where Sx and Sz are simply the spin-1/2 operators

Sx = 1
2

⎛⎜⎝ 0 1

1 0

⎞⎟⎠ , Sz = 1
2

⎛⎜⎝ 1 0

0 −1

⎞⎟⎠
in a basis with Sz diagonal and with � = 1. We can denote the basis states in the Sz

basis by the set {|↑〉 , |↓〉} and in the Sx basis by {|→〉 , |←〉}, so that

Sz |↑〉 = 1
2
|↑〉

Sz |↓〉 = −1
2
|↓〉

Sx |→〉 = 1
2
|→〉

Sx |←〉 = −1
2
|←〉 .

Sx is obtained from Sz by the similarity transformation

Sx = PSzP−1 ,

where P is the unitary matrix

P = 1√
2

⎛⎜⎝ 1 1

1 −1

⎞⎟⎠ = P−1 .
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Thus, the Sx basis states and the Sz basis states are related by

|→〉 = 1√
2
(|↑〉+ |↓〉)

|←〉 = 1√
2
(|↑〉 − |↓〉) ,

with the inverse relation

|↑〉 = 1√
2
(|→〉+ |←〉)

|↓〉 = 1√
2
(|→〉 − |←〉) .

The Hamiltonian of the one particle system in the Sz basis is

Hε = −1
2

⎛⎜⎝ hz hx

hx −hz

⎞⎟⎠ .

The normalized eigenstates of Hε are

|ε0〉 =
hx |↓〉+

(
hz +

√
h2

x + h2
z

)
|↑〉√

h2
x +

(
hz +

√
h2

x + h2
z

)2
,

with eigenenergy

ε0 = −
√

h2
x + h2

z

2
,

and

|ε1〉 =
hx |↓〉+

(
hz −

√
h2

x + h2
z

)
|↑〉√

h2
x +

(
hz −

√
h2

x + h2
z

)2
,

with eigenenergy

ε1 = +

√
h2

x + h2
z

2
.

Now that we have obtained the eigenstates and the corresponding energies of the

one-particle Hamiltonian, we return to the general Hamiltonian (1).

3. Energy Levels and Degeneracies

From the results of the previous section and the fact that the particles are non-interacting,

it is clear that there are N + 1 energy levels. We obtain them presently.
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3.1 Ground State

The ground state |E0〉 of the system of non-interacting N spin-1/2 particles is the direct

product state

|E0〉 = |ε0〉 |ε0〉 |ε0〉 · · · · · · · · · · · · |ε0〉
= (|ε0〉)N . (2)

The ground state energy of the system is found as follows

H |E0〉 =
∑

i

Hi |E0〉

= (H1 |ε0〉) |ε0〉 |ε0〉 · · · · · · · · · · · · · · · |ε0〉

+ |ε0〉 (H2 |ε0〉) |ε0〉 · · · · · · · · · · · · |ε0〉

+ |ε0〉 |ε0〉 (H3 |ε0〉) |ε0〉 · · · · · · · · · |ε0〉

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+ |ε0〉 |ε0〉 |ε0〉 · · · · · · · · · |ε0〉 (HN |ε0〉) .

Since Hi |ε0〉 = ε0 |ε0〉 and there are N terms in the above sum, we thus find that

H |E0〉 = Nε0 |E0〉 .

The ground state energy of the model is therefore

E0 = Nε0

= −N

2

√
h2

x + h2
z .

We shall have more to say about the ground state, in the next section, but presently

we obtain the other energy levels.

3.2 Excited States

A first excited state (FES) of the model is

|E1〉1 = |ε0〉 |ε0〉 |ε0〉 · · · · · · · · · |ε0〉 |ε1〉 .

We see at once that the FES is N−fold degenerate, since |ε1〉 can occur anywhere in the

direct product state. The superscript 1 was affixed in anticipation. The remaining N − 1

states that are degenerate with |E1〉1 are

|E1〉2 = |ε0〉 |ε0〉 · · · · · · · · · |ε0〉 |ε1〉 |ε0〉

|E1〉3 = |ε0〉 |ε0〉 · · · · · · · · · |ε1〉 |ε0〉 |ε0〉

· · · · · · · · · · · · · · · · · · · · · · · ·

|E1〉N = |ε1〉 |ε0〉 |ε0〉 · · · · · · · · · |ε0〉 |ε0〉 .
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The energy of the first excited state is found from

H |E1〉1 =
∑
i

Hi |E1〉1

= (H1 |ε0〉) |ε0〉 |ε0〉 · · · · · · · · · |ε0〉 |ε1〉

+ |ε0〉 (H2 |ε0〉) |ε0〉 · · · · · · |ε0〉 |ε1〉

+ · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+ |ε0〉 |ε0〉 · · · · · · · · · |ε0〉 (HN |ε1〉)

= (N − 1)ε0 |E1〉1 + ε1 |E1〉1

= [(N − 1)ε0 + ε1] |E1〉1 .

From which it follows that

E1 = (N − 1)ε0 + ε1

= (N − 2)ε0 .

In general, a kth excited state has k |ε1〉 factors in the direct product state. Since

there are (N, k) ways of arranging the k |ε1〉 factors, this means that the kth excited state

has degeneracy g (Ek), given by

g (Ek) =

⎛⎜⎝N

k

⎞⎟⎠ =
N !

k!(N − k)!
.

The degenerate energy Ek is easily found by the above scheme to be

Ek = (N − k)ε0 + kε1

= (N − 2k)ε0 .

We see that only the ground state |E0〉 and the Nth excited state |EN〉 are non-

degenerate.

4. An Explicit Expression for the Ground State

We recall from equation (2) that the ground state is the direct product state

|E0〉 = (|ε0〉)N , (3)

where

|ε0〉 =
hx |↓〉+

(
hz +

√
h2

x + h2
z

)
|↑〉√

h2
x +

(
hz +

√
h2

x + h2
z

)2
.
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Performing the binomial expansion suggested by equation (3), we have that

|E0〉 =

N∑
m=0

hN−m
x

(
hz +

√
h2

x + h2
z

)m

|Sm〉[
h2

x +
(
hz +

√
h2

x + h2
z

)2
]N/2

, (4)

where |Sm〉 is the linear combination of the (N, m) states with m spins up (in the

total Sz basis), that is, the linear combination of all states with total Sz = m−N/2.

We can check the trivial limits of (4):

(1) hz = 0

H = −hx

∑
i

Sx
i

Putting hz = 0 in (4) gives

|E0〉 =

N∑
m=0

hN−m
x hm

x |Sm〉

(2h2
x)

N/2

=
1

(
√

2)N

N∑
m=0

|Sm〉

=
1

(
√

2)N
(|↑〉+ |↓〉)N

= (|→〉)N

= |→→→ · · · · · · →〉

(2) hx = 0

that is

H = −hz

∑
i

Sz
i

Here the ground state is trivially the all spins up, non-degenerate ferromagnetic

state

|E0〉 = |↑↑↑ · · · · · · ↑〉

with energy

E0 = −Nhz/2

Putting hx = 0 in in (4), we see that the only non-vanishing term in the sum occurs

when m = N and so,

|E0〉 =
(2hz)

N

(2hz)N
|SN〉

= |↑↑↑ · · · · · · ↑〉 .
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5. Example Applications

In this section, we will consider two models with interaction, the interactions will be

treated as perturbations. Specifically we will obtain the ground state energy of the Ising

model in two fields and also the XZ model in non-commuting fields to second order in

nearest neighbour exchange interactions. We will also compute first order corrections to

the energy of the first excited state for each model.

We first note that for the one-particle system

Sz |ε0〉 =
1

2

−hx |↓〉+
(
hz +

√
h2

x + h2
z

)
|↑〉√

h2
x +

(
hz +

√
h2

x + h2
z

)2

= |α〉

and

Sz |ε1〉 =
1

2

−hx |↓〉+
(
hz −

√
h2

x + h2
z

)
|↑〉√

h2
x +

(
hz −

√
h2

x + h2
z

)2

= |β〉 ,

so that we have the matrix elements

〈ε0|Sz |ε0〉 = 〈ε0 | α〉 = 1
2

hz√
h2

x+h2
z

〈ε1|Sz |ε0〉 = 〈ε1 | α〉 = −1
2

hx√
h2

x+h2
z

= 〈ε0 | β〉

〈ε1|Sz |ε1〉 = 〈ε1 | β〉 = −1
2

hz√
h2

x+h2
z

.

(5)

Furthermore,

Sx |ε0〉 =
1

2

hx |↑〉+
(
hz +

√
h2

x + h2
z

)
|↓〉√

h2
x +

(
hz +

√
h2

x + h2
z

)2

and

Sx |ε1〉 =
1

2

hx |↑〉+
(
hz −

√
h2

x + h2
z

)
|↓〉√

h2
x +

(
hz −

√
h2

x + h2
z

)2
,

so that we have also the following marix elements:

〈ε0|Sx |ε0〉 = 〈ε0 | λ〉 = 1
2

hx√
h2

x+h2
z

= −〈ε1 | α〉

〈ε1|Sx |ε0〉 = 〈ε1 | λ〉 = 1
2

hz√
h2

x+h2
z

= 〈ε0|Sx |ε1〉 = 〈ε0 | δ〉

〈ε1|Sx |ε1〉 = 〈ε1 | δ〉 = −1
2

hx√
h2

x+h2
z

= 〈ε1 | α〉 = −〈ε0 | λ〉
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We are now ready to compute the energy corrections.

5.1 Perturbation Expansion of the Ground State Energy of the Ising

Model in Non-Commuting Fields

The Ising model in non-commuting magnetic fields is described by the Hamiltonian

HI = −j
∑

i

Sz
i S

z
i+1 − hx

∑
i

Sx
i − hz

∑
i

Sz
i

= V + H , (6)

where

V = −j
∑

i

Sz
i S

z
i+1

and H is as given in (1).

The nearest neighbour exchange interaction j is assumed positive, so that we have a

ferromagnetic model. Furthermore, we assume a periodic boundary condition, so that

Sz
N+i = Sz

i . For weak interaction, V can be treated as a perturbation.

5.1.1 First Order Energy Correction

The first order correction to the ground state energy of the Hamiltonian (6) is given by

ΔE
(1)
0I

= 〈E0|V |E0〉
= −j 〈E0|

∑
i

Sz
i S

z
i+1 |E0〉 .

Now, ∑
i

Sz
i S

z
i+1 |E0〉 = Sz

1S
z
2 |E0〉+ Sz

2S
z
3 |E0〉+ · · ·+ Sz

NSz
1 |E0〉

= |α〉 |α〉 |ε0〉 |ε0〉 · · · · · · · · · |ε0〉

+ |ε0〉 |α〉 |α〉 |ε0〉 · · · · · · |ε0〉

+ |ε0〉 |ε0〉 |α〉 |α〉 · · · · · · |ε0〉

+ · · · · · · · · · · · · · · · · · · · · · · · ·

+ |α〉 |ε0〉 |ε0〉 · · · · · · |ε0〉 |α〉 .

(7)

Multiplying from the left by 〈E0|, we have

〈E0|
∑

i

Sz
i S

z
i+1 |E0〉 = N (〈ε0 | α〉)2

=
N

4

h2
z

h2
x + h2

z

.
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We therefore have that the first order correction to the ground state energy of the Ising

model in non-commuting magnetic fields is

ΔE
(1)
0I

=
−jN

4

h2
z

h2
x + h2

z

.

5.1.2 Second Order Correction

The second order correction to the ground state energy of the Ising model in non-

commuting fields has the form

ΔE
(2)
0I

=
∑
E

|〈E|V |E0〉|2

E0 − E
. (8)

From the form of (7) and the fact that 〈ε0 | ε1〉 = 0 it is clear that only states with

E = E1 and those with E = E2 can contribute to the sum in (8). We consider them in

turns.

When E = E1, we observe that |E1〉1 = |ε0〉 |ε0〉 · · · · · · |ε0〉 |ε1〉 gives

1〈E1|
∑

i

Sz
i S

z
i+1 |E0〉

= 〈ε1| 〈ε0| 〈ε0| · · · · · · 〈ε0 | ε0〉 |ε0〉 |ε0〉 · · · · · · |ε0〉 |α〉 |α〉
+ 〈ε1| 〈ε0| 〈ε0| · · · · · · 〈ε0 | α〉 |ε0〉 |ε0〉 · · · · · · |ε0〉 |ε0〉 |α〉

= 2 〈ε1 | α〉 〈ε0 | α〉 .

We have similar results from the remaining N − 1 states that are degenerate with

|E1〉1. The E = E1 states therefore contribute

N
(2 〈ε1 | α〉 〈ε0 | α〉)2 (−j)2

2ε0

=
Nj2

8ε0

h2
xh

2
z

(h2
x + h2

z)
2

to the sum in (8). We have used (5) to substitute for 〈ε1 | α〉 and 〈ε0 | α〉 and we

have also used the fact that E0 −Ek = 2kε0.

As for the states with E = E2, only N (those with two consecutive |ε1〉 factors) of

the (N, 2) states contribute to the sum. Their contribution is

N
(〈ε1 | α〉)2 (−j)2

4ε0
=

Nj2

64ε0

h4
x

(h2
x + h2

z)
2 .

The second order correction to the ground state energy of the Ising model in non-

commuting fields is therefore

ΔE
(2)
0I

=
Nj2

8ε0

h2
xh

2
z

(h2
x + h2

z)
2 +

Nj2

64ε0

h4
x

(h2
x + h2

z)
2 .
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5.2 Perturbation expansion of the ground state energy of the XZ model

in non-commuting fields.

The XZ model in one dimension, in the presence of non-commuting external fields is

described by the Hamiltonian

Hxz = −j1

N∑
i=1

Sx
i Sx

i+1 − j2

N∑
i=1

Sz
i S

z
i+1 − hx

N∑
i=1

Sx
i − hz

N∑
i=1

Sz
i ,

where j1 > 0 and j2 > 0 are the nearest neighbour exchange interaction energy. Again

we assume a periodic boundary condition, so that Sx
N+i = Sx

i and Sz
N+i = Sz

i . For weak

nearest neighbour interactions, after calculations similar to that in the previous section,

we obtain the following corrections to the ground state energy:

ΔE
(1)
0XZ

= −N

4

1

h2
x + h2

z

(
j1h

2
x + j2h

2
z

)
and

ΔE
(2)
0XZ

=
N

8ε0

h2
xh

2
z

(h2
x + h2

z)
2

(
j2
1 + j2

2

)
+

N

64ε0

1

(h2
x + h2

z)
2

(
j2
1h

4
x + j2

2h
4
z

)
.

The ground state energy of the XZ model in non-commuting fields, to second order in

interactions j1 and j2 is thus

E0XZ
= −N

2

√
h2

x + h2
z −

N

4

1

h2
x + h2

z

(
j1h

2
x + j2h

2
z

)
+

N

8ε0

h2
xh

2
z

(h2
x + h2

z)
2

(
j2
1 + j2

2

)
+

N

64ε0

1

(h2
x + h2

z)
2

(
j2
1h

4
x + j2

2h
4
z

)
.

5.3 First Order Correction to the Energy of the First Excited State (FES)

of the Ising Model in Non-Commuting Fields

The first excited state, in the absence of interactions, is N−fold degenerate, with the N

states as given in (3.2). We therefore use degenerate perturbation theory to find the first

order correction to the first excited state energy of the Ising model in non-commuting

fields. ∑
i

Sz
i S

z
i+1 |E1〉1 = |α〉 |α〉 |ε0〉 |ε0〉 · · · · · · · · · |ε1〉

+ |ε0〉 |α〉 |α〉 |ε0〉 · · · · · · |ε0〉 |ε1〉

+ · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+ |ε0〉 |ε0〉 |ε0〉 · · · · · · |ε0〉 |α〉 |β〉

+ |α〉 |ε0〉 |ε0〉 · · · · · · |ε0〉 |ε0〉 |β〉 .
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We therefore have that

1〈E1|
∑

i

Sz
i S

z
i+1 |E1〉1

= (N − 2) (〈ε0 | α〉)2 + 2 〈ε0 | α〉 〈ε1 | β〉

=
h2

z

h2
x + h2

z

(
N

4
− 1

)
.

A similar calculation for the remaining N −1 states shows that the diagonal elements

of the N ×N perturbation matrix V , are equal, being given by:

Vii =i〈E1|
(
−j

∑
i

Sz
i S

z
i+1

)
|E1〉i

=
−jh2

z

h2
x + h2

z

(
N

4
− 1

)
= f . (9)

We can also compute V21 thus

V21 =2〈E1|
(
−j

∑
i

Sz
i S

z
i+1

)
|E1〉1

= −j 〈ε0| 〈ε1| 〈ε0| · · · · · · 〈ε0 | ε0〉 · · · · · · |α〉 |β〉
= −j 〈ε1 | α〉 〈ε0 | β〉

=
−j

4

h2
x

h2
x + h2

z

.

In fact, for m �= n, we have

Vmn =m〈E1|
(
−j

∑
i

Sz
i S

z
i+1

)
|E1〉n

=
−j

4

h2
x

h2
x + h2

z

δm,n±1

= Vnm = g . (10)

The N ×N perturbation matrix V is therefore

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f g 0 0 0 0 · · · g

g f g 0 0 0 · · · 0

0 g f g 0 0 · · · 0

0 0 g f g 0 · · · 0

0 0 0 g f g
...

0 0 0
. . .

... g f g

g 0 0 0 · · · 0 g f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where f and g are as given in (9) and (10). Clearly f and g are negative for N > 4. The

smallest eigenvalue of V is 2g + f and is non-degenerate, so that the correction to the

first excited state energy, to first order in interaction j is

ΔE
(1)
1I

= 2g + f

=
−j

2

h2
x

h2
x + h2

z

− jh2
z

h2
x + h2

z

(
N

4
− 1

)
.

The nearest neighbour interactions thus lift the degeneracy in the first excited state

of the model. The energy of the first excited state of the Ising model in non-commuting

fields, to first order in j is therefore

E1I
=

(
1− N

2

)√
h2

x + h2
z −

j

2

h2
x

h2
x + h2

z

− jh2
z

h2
x + h2

z

(
N

4
− 1

)
.

5.4 First Order Correction to the Energy of the First Excited State (FES)

of the XZ Model in Non-Commuting Fields

A completely analogous treatment to the above gives the energy of the first excited state

of the XZ model in non-commuting fields, to first order in the interactions j1 and j2 as

E1XY
= −

(
N

2
− 1

)√
h2

x + h2
z

− 1

2

j2h
2
x + j1h

2
z

h2
x + h2

z

−
(

N

4
− 1

)
j1h

2
x + j2h

2
z

h2
x + h2

z

.

Conclusion

We have obtained all the energy levels of a system of N non-interacting spin-1/2 particles

in non-commuting external magnetic fields, in one dimension. The energy of the kth level

is Ek = (N − 2k)ε0, where ε0 = −
√

(h2
x + h2

z)/2 and k = 0, 1, 2, . . . , N . The kth energy

level was found to be (N, k) = N !/[k!(N −k)!]-fold degenerate. An expicit expression for

the ground state

was also derived (equation (4)). It is not difficult to give similar explicit expressions

for the excited states. A scheme for obtaining the energies of the excited states was

highlighted in section 3.2.

Since most real systems do interact, examples of how the interaction terms of an Hamilto-

nian can be included by Rayleigh-Schrödinger perturbation was demonstrated by finding

energy corrections to the ground state energy of the Ising model in non-commuting fields,

as well as to the ground state energy of the XZ model in non-commuting fields. Correc-

tions to the first excited state energy were also calculated.
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1. Introduction

This paper’s main result has a very strong convergence with the slope of graphs of

electron-positron pair production representations. The newly derived results include a

threshold electric field explicitly as a starting point without an arbitrary cut off value

for the start of the graphed results, thereby improving on both the Zener plots and

Lin’s generalization of Schwingers 1950 electron-positron nucleation values results for

low dimensional systems. The similarities in plot behavior of the current values after

the threshold electric field values argue in favor of the Bardeen pinning gap paradigm.

We conclude with a discussion of how these results can be conceptually linked to a new

scheme of exact evolution of the dynamics of quantum φ4 field theory in 1+1 dimensions.

In several dimensions, we find that the Gaussian wavefunctionals would be given in the

form given by Lu. Lu’s integration given below is a two dimensional Gaussian wave

functional. The analytical result we are working with is a one-dimensional version of a

ground-state wave functional of the form

|0 >o= N · exp

⎧⎨⎩−
∫
x,y

)(φx − ϕ) · fxy · (φy − ϕ)� · dx · dy

⎫⎬⎭ (1)

Lu’s Gaussian wave functional is for a non-perturbed, Hamiltonian as given in Eq. (17b)

below

HO =

∫
x

[
1

2
· Π2

x +
1

2
· (∂xφx)

2 +
1

2
· μ2 · (φx − ϕ)2 − 1

2
· I0 (μ)

]
· dx · dy (2)

We should note that Lu intended the wavefunctional given in Eq. (17a) to be a test

functional, much as we would do for finding an initial test functional , using a simple

Gaussian in computing the ground state energy of a simple Harmonic oscillator variational

derivative. calculation. We may obtain a ‘ground state’ wave functional by taking the

one dimensional version of the integrand given in Eq. (17a). This means have [1, 2???] a

robust Gaussian. Lu’ Gaussian wave functional set

∂2 · VE

∂ · φa · ∂ · φb
∝ fxy (3)

Here, we call VE a (Euclidian-time style) potential, with subscripts a and b referring to

dimensionality; and φx an ‘x dimension contribution’ of alternations of ‘average’ phase

ϕ, as well as φy an ‘y dimension contribution’ of alternations of ‘average’ phase ϕ. This

average phase is identified in the problem we are analyzing as φC

This leads to writing the new Gaussian wavefunctional to be looking like

Ψ ≡ c
·
exp(−α ·

∫
dx [φ− φC]2) (4)

Making this step from Eq. (17a) to Eq. (18) involves recognizing, when we go to one-

dimension, that we look at a washboard potential with pinning energy contribution from
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D · ω2
P in one- dimensional CDW systems

1

2
·D · ω2

P · (1− cos φ) ≈ 1

2
·D · ω2

P ·
(

φ2

2
− φ4

24

)
(5)

The fourth-order phase term is relatively small, so we look instead at contributions from

the quadratic term and treat the fourth order term as a small perturbing contribution to

get our one dimensional CDW potential, for lowest order, to roughly look like Eq. (19b).

In addition, we should note that the c is due to an error functional-norming procedure,

discussed below; α is proportional to one over the length of distance between instaton

centers

Figure 1 below represents the constituent components of a S-S’ pair; the phase value,

φC , is set to represent a configuration of phase in which the system evolves to/from in

the course of the S-S’ pair evolution. This leads to

c1 · exp

(
−α1 ·

∫
dx̃ [φF ]2

)
∼= Ψinitial (6)

As well as

c2 · exp

(
−α2 ·

∫
dx̃ [φT ]2

)
∼= Ψfinal (7)

fxy −→
reduction−to−one−dim

δ (x− y)
/
L1+δ+ (8)

Fig. 1 Evolution from an initial state Ψi[φ] to a final state Ψf [φ] for a double-well potential
(inset) in a 1-D model, showing a kink-antikink pair bounding the nucleated bubble of true
vacuum. The shading illustrates quantum fluctuations about the initial and final optimum
configurations of the field , while φ0(x) represents an intermediate field configuration inside the
tunnel barrier. The upper right hand side of this figure is how the fate of the false vacuum
hypothesis gives a difference in energy between false and true potential vacuum values.

Whereas in multi dimensional treatments, we have

fxy ≈
∂Veff

∂r
(9)
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In the current vs. applied electric field derivation results, we identify the Ψi[φ]as the

initial wave function at the left side of a barrier and Ψf [φ]as the final wave function at

the right side of a barrier. This can most easily be seen in the following diagram of how

the S-S’ pair structure arose in the first place, as given by Fig. 2:

Fig. 2 The above figures represents the formation of soliton-anti soliton pairs along a ‘chain’ .
The evolution of phase is spatially given by φ (x) = π · [tanh b (x− xa) + tanh b(xb − x)]

The tunneling Hamiltonian incorporates wavefunctionals whose Gaussian shape keeps

much of the structure as represented by Fig. 2.Following the false vacuum hypothesis, we

have a false vacuum phase value φF ≡< φ >1
∼= very small value,as well as having in

CDW, a final true vacuum φT
∼= φ2π ≡ 2 · π + ε+. This led to Gaussian wavefunctionals

with a simplified structure. For experimental reasons, we need to have (if we set the

charge equal to unity, dimensionally speaking)

α ≈ L−1 ≡ ΔEgap ≡ VE (φF )− VE (φT ) (10)

This is equivalent to the situation as represented by Fig. 3

I ∝ C̃1 ·
[
cosh

[√
2 · E

ET · cV

−
√

ET · cV

E

]]
· exp

(
−ET · cV

E

)
(11)

The current expression is a great improvement upon the phenomenological Zener current

expression, where GP is the limiting Charge Density Wave (CDW) conductance.
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Fig. 3 Fate of the false vacuum representation of what happens in CDW. This shows how we
have a difference in energy between false and true vacuum values. This eventually leads to a
current along the lines of..???

I ∝ GP · (E − ET ) · exp

(
−ET

E

)
if E > ET (12)

0 otherwise

Fig. 4 illustrates to how the pinning gap calculation improve upon a phenomenological

curve fitting result used to match experimental data. The most important feature here is

that the theoretical equation takes care of the null values before thre threshold is reached

by itself. I.e. we do not need to set it to zero as is done arbitrarily in Eqn (12). This is

in any case tied in with a tilted zenier.

Fig. 4 Experimental and theoretical predictions of current values versus applied electric field.
The dots represent a Zenier curve fitting polynomial, whereas the blue circles are for the S − S

′

transport expression derived with a field theoretic version of a tunneling Hamiltonian.

So then, we have L ∝ E−1.. When we consider a Zener diagram of CDW electrons

with tunneling only happening when e∗ · E · L > εG where e∗ is the effective charge of

each condensed electron and εG being a pinning gap energy, we find , assuming that x is

the de facto distance between an instanton pair and a measuring device.

In the current vs. applied electric field derivation results, we identify the Ψi[φ]as

the initial wave function at the left side of a barrier and Ψf [φ]as the final wave function
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at the right side of a barrier. Note that Tekman5 extended the tunneling Hamiltonian

method to encompass more complicated geometries. We notice that when the matrix

elements Tkq are small, we calculate the current through the barrier using linear response

theory. This may be used to describe coherent Josephson-like tunneling of either Cooper

pairs of electrons or boson-like particles, such as super fluid He atoms. In this case, the

supercurrent is linear with the effective matrix element for transferring a pair of electrons

or transferring a single boson, as shown rather elegantly in Feynman’s derivation of

the Josephson current-phase relation. This means a current density proportional to |T |
rather than |T |2 since tunneling, in this case, would involve coherent transfer of individual

(first-order) bosons rather than pairs of fermions. Note that the initial and final wave

functional states were in conjunction with a pinning gap formulation of a variation of

typical band calculation structures. This also lead us to after much work to make the

following scaling rule which showed up in the linkage between the tilted zenier band

model and the distance to a measuring device, which we call x, representing the distance

between a modeled instanton structure in density wave physics and a measuring device.

L

x
∼= cv ·

ET

E
(13)

Fig. 5 This is a representation of ‘Zener’ tunneling through pinning gap with band structure
tilted by applied E fieldT

2. Comparison With LIN’s Generalization

In a 1999, Qiong-gui Lin proposed a general rule regarding the probability of electron-

positron pair creation in D+1 dimensions, with D varying from one to three, leading, in

the case of a pure electric field, to

wE = (1 + δd3) ·
|e · E|(D+1)/2

(2 · π)D
·
∞∑

n=1

1

n(D+1)/2
· exp

(
−n · π ·m2

|e · E|

)
(14)

When D is set equal to three, we get (after setting e2, m ≡ ‘1 )
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wIII(E) =
|E|2

(4 · π3)
·
∞∑

n=1

1

n2
· exp

(
−n · π
|E|

)
(15)

which, if graphed gives a comparatively flattened curve compared w.r.t. to what we

get when D is set equal to one (after setting e2, m ≡ ‘1 )

wI(E) =
|E|1

(2 · π1)
·
∞∑

n=1

1

n1
· exp

(
−n · π
|E|

)
≡ − |E|

2 · π · ln
[
1− exp

(
− π

E

)]
(16)

which is far more linear in behavior for an e field varying from zero to a small numerical

value. We see these two graphs in Fig. 6.

Fig. 6 Two curves representing probabilities of the nucleation of an electron-positron pair in
a vacuum. wI(E) is a nearly-linear curve representing a 1+1 dimensional system, whereas the
second curve is for a 3 + 1 dimensional physical system and is far less linear

This is indicating that, as dimensionality drops, we have a steady progression to-

ward linearity. The three-dimensional result given by Lin is merely the Swinger result

observed in the 1950s. When I have D = 1 and obtain behavior very similar to the

analysis completed for the SS’ current argument just presented, the main difference is in

a threshold electric field that is cleanly represented by our graphical analysis. This is a

major improvement in the prior curve fitting exercised used in 1985 to curve-fit data.

3. Conclusion- and Linkage to Exact Dynamics of φ4 Field The-

ory in 1+1 Dimensions

We restrict this analysis to ultra fast transitions of CDW; this is realistic and in sync

with how the wavefunctionals used are formed in part by the fate of the false vacuum

hypothesis.

Additionally, we explore the remarkable similarities between what we have presented

here and Lin’s expansion of Schwinger’s physically significant work in electronpositron

pair production. That is, the pinning wall interpretation of tunneling for CDW permits

construction of I-E curves that match experimental data sets; beforehand these were

merely Zener curve fitting polynomial constructions.

Having obtained the I-E curve similar to Lin’s results gives credence to a pinning

gap analysis of CDW transport, with the main difference lying in the new results giving

a definitive threshold field effect, whereas both the Zenier curve fit polynomial and Lin’s
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results are not with a specifically delineated threshold electric field. v The derived result

does not have the arbitrary zero value cut off specified for current values below given by

Miller et al1 in 1985 but gives this as a result of an analytical derivation. This assumes

that in such a situation that the electric field is below a given threshold value.

We used the absorption of a Peierls gap Δ′term as clearly demonstrated in a numerical

simulation paper I wrote to help form solitons (anti-solitons) used in my Gaussian wave

functionals for the reasons stated in my. IJMPBarticle. This is new physics which

deserves serious further investigation. It links our formalism formally with a JJ (Josephon

junction) approach, and provides analogies worth pursuing in a laboratory environment.

The also stunning development is that the plotting of Eqn (16) ties in with the electron-

positron plots as given by Lin in Fig (6)for low dimensional systems, which conveniently

fits with identification of a S-S’ pair with different ‘charge centers’

How does this relate to what we can think of concerning questions we raise about

phase transitions ?

Question 1) Can we use a topological model for phase transitions concerning the

change from a false vaccum to a real vacuum? The answer to this one lies in our inter-

pretation of α ≈ L−1 ≡ ΔEgap ≡ VE (φF )− VE (φT ), and in the congruency of Eqn. (16)

with the I-E plot given by Eqn. (11). If there is a close analytical match up between Eqn.

(11) and Eqn. (16), the topological match up is probably not necessary, and we can de

facto stick with analytical derivation of current with its direct match up with electron –

positron models. If we cannot get a close to exact congruency between Eqn. (11) and (16)

then perhaps we should think of the Bogomolnyi inequality approach mentioned in sev-

eral publications by this author to explain the inherent breaking of symmetry presented

above

Question 2) What about linkage to quantum switching devices implied by the abrupt

I-E curve turn on implied by Fig 4 above? My intuition is that this can be answered

if or not there is a phase transition. I.e. if the Bogomolnyi inequality can to be used

directly to get α ≈ L−1 ≡ ΔEgap ≡ VE (φF ) − VE (φT ) exactly configured as a bridge of

the φ4field theory in 1+1 dimension to Gaussian wave functionals, we will have quantum

switching and ultra fast data transitions along requirements needed for phase transitions.

Please see the following references as to how this is modeled

Question 3) What about direct analogies as to how we can solve a φ4 field theory

in 1+1 dimensions exactly in terms of real time evolution, without invoking the Bogo-

molonyi inequality? This is in terms of taking a real time evolution of the phase is a way

to fill in detail alluded to in Fig 1 , making use of the following
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Ψf [φ (x)]| φ≡φCf
=

cf · exp
{
−
∫

dx α [φC f (x) − φ0 (x)]2
}
→

c2 · exp
(
−α2 ·

∫
dx̃ [φT ]2

) ∼= Ψfinal ,

(17a)

and

Ψi [φ (x)] |φ≡φCi

= ci · exp
{
−α

∫
dx [φci (x) − φ0]

2 }→
c1 · exp

(
−α1 ·

∫
dx̃ [φF ]2

)
≡ Ψinitial ,

(17b)

This will represent a kink, anti kink combination with the kink given to us as part

of Coopers presentation of a sympletic algorithm of updating the operator equations of

quantum evolution of a potential system he writes as

V [φ] = −m2

2
· φ2 +

λ

4
· φ4 ↔ 1

2
·D · ω2

P · (1− cos φ) ≈ 1

2
·D · ω2

P ·
(

φ2

2
− φ4

24

)
(18)

which has a kink solution of the form φ [x] = m√
λ
· tanh mx√

2
. A kink-anti kink structure

so implied by the Gaussian wave functional is stated by Cooper, quoting Moncrief to

have an evolution given by a sympletic evolution equation, as given below assuming an

averaging procedure we can write as

yi ∼
∫

Vi

dxφ [x, t]/ΔVi ≈ average of φ [x, t] in a ball about xi of volume ΔVi)

(19a)

And
dyi

dt
≡ πi [t] (19b)

And
dπi

dt
≡ 1

a2
· [yi+1 + yi−1 − 2yi]− λy3

i + m2yi = F [yi] (19c)

This is assuming that we spatially discretize a Hamiltonian density via∫
dx→ a ·

∑
i

(19d)

Following a field theory replacement of x̂→ φop [x, t], and a discretized time structure

given by t = j ∈
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This leads to the possibility of looking at a quantum foam evolution as given in Fig

1 via the following sympletic structures , with i the ‘spatial component along a chain’

, and j the ‘time component’ along a chain. Eqn. (19e) and Eqn (19f) are materially

no different than having energy course through a wave lattice as seen in ocean swells

accommodating an energy pulse through the water.

yi [j + 1] = yi [j] + ∈ ·πi [j] +
∈2

2
· F (yi [j]) (19e)

πi [j + 1] = πi [j] +
∈
2
· (F (yi [j]) + F (yi+1 [j])) (19f)

A proper understanding of this evolution dynamic should permit a more mature quan-

tum foam interpretation of false vacuum nucleation. This is, of course independent of

the datum that adjacent chains in themselves interacting are a necessary condition for

the formation of instatons in the first place, as given by the following appendix entry

presentation as to a necessary condition for the formation of a kink ( anti kink ) in the

first place

4. Appendix: Formation of the Instanton Via Adjacent Chains

What role does the multi chain argument play as far as formulation of the

soliton – instanton ? Why add in the Pierls gap term in the first place?

Answer

First of all, we add the following term, based upon the Pierls gap to an analysis of

how an instanton evolves

H =
∑

n

[
Π2

n

2 ·D1
+ E1 [1− cos φn] + E2 (φn −Θ)2 + Δ′ · [1− cos (φn − φn−1)]

]
(1)

Πn =
(

�/i

)
· ∂/∂φn

which then permits us to write

U ≈ E1 ·
n+1∑
l=0

[1− cos φl] +
Δ

′

2
·

n∑
l=0

(φl+1 − φl)
2 (2)

which allowed using L = T − U a Lagrangian based differential equation of

••
φi−ω2

0 [(φi+1 − φi)− (φi − φi−1)] + ω2
1 sin φi = 0 (3)

with

ω2
0 =

Δ′

me−l2
(4)

ω2
1 =

E1

me−l2
(5)

where we assume the chain of pendulums, each of length l, leads to a kinetic energy

T =
1

2
·me− l2 ·

n+1∑
j=0

•
φ2

j (6)
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To get this, we make the following approximation. This has

Δ
′
(1− cos [φn − φn−1])→

Δ
′

2
· [φn − φn−1]

2 + very small H.O.T.s. (7)

and then consider a nearest neighbor interaction behavior via

Vn.n. (φ) ≈ E1 [1− cos φn] + E2 (φn −Θ)2 +
Δ

′

2
· (φn − φn−1)

2 (8)

Here, we set Δ
′
>> E1 >> E2, so then this is leading to a dimensionless Sine–Gordon

equation we write as

∂2φ (z, τ )

∂τ 2
− ∂2φ (z, τ )

∂z2
+ sin φ (z, τ ) = 0 (9)

Punch line. Without the Pierls term added in, we do not get a Sine Gordon equation.

No Instanton formulation.

Please consult the following four references [3-6] as to the derivation and the significance

of Eqn. (11) of this document. Called the ‘Diamond’ in TcSAM by Dr. Patrick Xie

who pointed out the significance of this derivation to the Author during the Author’s

Dissertation defense in December 2001.
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1. Introduction

In the last thirty years the study of self-organization and emergence phenomena has

become one of the main topics of actual scientific research. Such a circumstance is due

to two main reasons:

(1) theoretical ; the development of research domains such as the Theory of Dissipative

Structures (Nicolis & Prigogine, 1977) or the Synergetics (Haken, 1978, 1983), to-

gether with the advances in Dynamical Systems Theory (Guckenheimer & Holmes,

1983; Glendinning, 1994), gave new tools for modelling (and whence understand-

ing and controlling) the emergence of macroscopic phenomena or structures from

∗ eliano.pessa@unipv.it
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microscopic fluctuations; in turn, this fact seemed to open the possibility for build-

ing a theory of emergence in systems which were traditionally considered as not

susceptible of a mathematical analysis, such as the biological, psychological, social

and economical ones; thus, within scientific world began to be diffused the hope of

solving, once for all, the problems connected to a number of celebrated dichotomies,

such as mind vs. body, substance vs. function, collective vs. individual, automatic

vs. controlled, and so on;

(2) technological ; the acknowledgement that a number of important physical phenom-

ena, such as superconductivity and superfluidity, were nothing but particular cases

of emergence, and the search for new technologies, such as the ones connected to

high-temperature superconductivity, showed that emergence is not only an affair for

philosophers, mathematicians, or psychologists, but even for engineers; besides, in

more recent times the development of agent-based software and of nanotechnology

forced engineers to deal with systems which, owing to purely physical reasons, can-

not be designed nor controlled from outside; whence, in these contexts self-design

and self-control appear as the only feasible strategies; in order to implement them,

however, we need a reliable theory of emergence.

A formidable problem in studying self-organization and emergence is due to the fact that

the available mathematical tools are very complex and their application often runs into

insurmountable difficulties. The very explosion, in the last fifteen years, of neural net-

work models seemed to offer a new way to cope with such a problem. Namely we can

approximate whatever dynamical system, complex as it may be, through a suitable neural

network which, in ultimate analysis, is nothing but a set of interconnected units, each

one implementing a very simple input-output transfer function. The latter system should

be much easier to study, mathematically or through computer simulations, than the orig-

inal dynamical system approximated by the neural network. Thus, we could use neural

networks to investigate the occurring of self-organization and emergence phenomena by

resorting to methods which should be simpler than the traditional ones.

In this paper we will try to determine up to which point such a claim is tenable. To

this end we will present a short review about neural networks and the behaviours they

can exhibit. After introducing suitable definitions of self-organization and emergence

we will, then, present a number of arguments supporting the claim that most neural

networks behaviours cannot be qualified as emergent. The same arguments will be used

to support a conjecture, according to which emergent phenomena can occur only within

a new, non-traditional, class of neural networks, which will be named quantum neural

networks. An attempt to characterize these latter, and their connection with quantum

computers, will be contained in the final part of this paper.

2. What are Neural Networks?

Shortly speaking, the term neural network (cfr. Bishop, 1995; Rojas, 1996) denotes a

generic system composed by units and interconnections between these units. The units
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are devices endowed with one output line and a number of input lines; they produce an

output activation as response to suitable input signals, according to a suitable transfer

function, whereas the interconnections vehiculate and modulate the signals flowing from

the output of a unit to the input of another unit. As regards the possible choices of

unit transfer functions and of interconnection modulatory actions, they are virtually

unlimited. However, chiefly in the early times of neural networks development, most

people constrained such a variety of choices by requiring that the behaviours of single

units and of interconnections should be neural-like, that is approximating, in some way,

the known behaviour of biological neurons and synapses. Practically, it is very difficult

to state what this requirement should mean. Actually there exists a number of different

models of units and of interconnections, ranging from a complete lack of adherence to

biological neuron operation, to a moderate imitation of some gross features of such an

operation, to a detailed representation of many its microfeatures (see, on this latter

category, Arbib, 1998; Koch, 1998; O’Reilly & Munakata, 2000).

We remind here that, in almost the totality of implementations, the operation of an

interconnection line is described as equivalent to the multiplication of transmitted signal

amplitude by a suitable real number, the so-called connection weight associated to the

line under consideration. In a sense, such a weight can be viewed as a rough counterpart

of the synaptic efficiency in biological neural networks. As a consequence of such a choice,

the net input (sometimes referred to as activation potential) received at time t by a given

unit, labeled, for convenience, by the index i, will be given by:

neti =
∑

k

wikxk(t)− s, (1)

where xk(t)denotes the output activation of the k-th unit, wik is the connection weight

associated to the line connecting the output of the k-th unit to the input of the i-th unit,

whereas s is a suitable (optional) threshold value.

In the following we will list some of the most popular choices regarding the transfer

functions of neural units. We will start from a case in which the biological interpretation

is completely lacking, represented by a unit, named RBF unit (RBF stands for Radial

Basis Function), acting as a feature detector, whose output u, in response to a suitable

input vector vi , is given by:

u = G(|pi − vi|/σ), (2)

where pi is a suitable prototype feature vector, associated to the unit, σ is a parameter

characterizing the unit sensitivity, usually called variance, whereas the symbol |pi − vi|
denotes the modulus of the distance between the two vectors. The function G is the usual

Gauss function defined by:

G(y) = exp(−y2). (3)

The second example is more adherent to the biological realm, as it takes into account

the all-or-none behaviour of a number of real neurons. Its discretized-time version can

be represented by the McCulloch-Pitts unit, whose output is given by:
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ui(t + 1) = H [neti(t)], (4)

where H is the usual Heaviside function. Another possible realization is given by the

sigmoidal unit :

ui(t + 1) = F [neti(t)], (5)

where F denotes the usual sigmoidal function:

F (y) = 1/[1 + exp(−y)]. (6)

The latter has the advantage of being everywhere continuous and differentiable. A

continuous-time version of (5) is given by the differential equation:

dxi/dt = −xi + F [neti(t)]. (7)

A more realistic continuous-time model is given by the Freeman unit , describing

the average behaviour of populations of biological neurons (cfr. Freeman, Yao & Burke,

1988; Whittle, 1998; Freeman, 2000). Such a kind of neural unit is characterized by an

activation law of the form:

y = f(x), Lx = u, (8)

where y denotes the neuron firing rate, x the current within cell body, u the external

input pulse rate, and L is a differential operator of the form:

L = Dtt + aDt + b, Dt = d/dt, (9)

in which the two parameters a and b are to be chosen in such a way that the poly-

nomial s2 + a s + b have two negative real roots. The low-frequency approximation

(time derivative vanishing) of Freeman unit activation law gives rise, by introducing a

discretized time scale, and a suitable rescaling of measure units, to the previously shown

activation law (5) of artificial sigmoidal neurons.

A neural network is, of course, characterized also by an architecture, that is by the

spatial arrangement of the units it contains. To this regard two main classes of networks

are to be distinguished: the ones, which we will denote as virtual, in which the “coordi-

nates” associated to each unit are to be considered merely as labels, devoid of any spatial

meaning, and the ones, which we will denote as spatial, in which these coordinates denote

the location of the unit in a physical space. As regards the former class of networks, it

is evident that we cannot introduce notions such as “distance between units”, or “neigh-

boring units”, whereas these concepts have a precise meaning within the latter class. In

both cases a neural network is usually described as a set of layers of units. Of course,

the concept of “geometrical shape” of a layer is endowed with a meaning only for spatial

networks. Usually people distinguishes between input layers, to which belong only the

units having at least an input line coming directly from the outside, output layers, to
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which belong only the units whose output line points directly to the outside, and inter-

mediate, or hidden, layers, containing all units (when present) not belonging to the input

or output layer. In some network models input and output layers coincide. As regards

connection lines, a distinction is made between feedforward connections, which connect

one layer to another along the direction from the input to the output layer, feedback,

or recurrent, connections, connecting one layer to another along the opposite direction,

from the output to the input layer, and lateral connections, connecting units lying within

the same layer. An important subclass of networks is constituted by spatial networks, in

which lateral connections exist only between neighboring units. This subclass includes

the Cellular Neural Networks (Chua & Yang, 1988), the Neuronic Cellular Automata

(Pessa, 1991), and a number of lattice models currently used in theoretical physics, such

as the celebrated Ising model and all spin glass models.

3. Neural Networks as Universal Approximators

There are many reasons for considering neural networks as universal approximators of

whatever kind of system (here and hereafter the word “system” is to be meant as equiv-

alent to “model of a given system”). The first one is due to the fact that whatever

input-output behaviour can be reproduced, with arbitrary degree of approximation, by a

suitable neural network. Such a circumstance is grounded on one of the most beautiful

theorems of mathematics, proved by Kolmogorov in 1957. In short such a theorem (for a

proof see, e.g., Sprecher, 1964) states that a continuous function of n variables can always

be represented through a finite composition of functions of a single variable and of the

operation of addition. In more precise terms, if we have a function of such a kind, to be

denoted by f(x1, x2 , . . . , xn) , and suitably restricted in such a way as to be a map

from [0 , 1]n to [0 , 1], there exist a function u of one argument, 2n + 1 functions of one

argument φk (k = 1, . . . , 2n + 1 ) , and n constants wr (r= 1, . . . , n ) such that the

following relation holds:

f(x1, x2, . . ., xn) =
∑

k

u[
∑

r

wrφk(xr)]. (10)

A short look to (10) allows us to identify in a natural way both u and φk with the

transfer functions of suitable neural units, whereas the wr can be viewed as connection

weights, so that the right hand member of this formula can be interpreted as the de-

scription of a suitable neural network. In a word, Komogorov theorem asserts that every

continuous function of n variables can be implemented through a finite neural network.

Such a result can be easily generalized to more general continuous maps from suitable

intervals of Rn to suitable intervals of Rm , which are defined simply through systems

of continuous functions of n variables.

From a practical point of view, however, the application of Kolmogorov theorem runs

into considerable difficulties, due to two main circumstances:

(1) there is no algorithm to find the concrete form of u and φk , as well as the values of
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the wr in the most general case of an arbitrary choice of the functional form of f ;

(2) not every choice of u and φk is allowable, as the latter should have the property of

being neural-like, that is corresponding to some transfer function concretely used

in neural network models.

These circumstances forced the researchers to shift the attention from the exact repro-

duction of a map through a neural network to the problem of the approximation of such

a map through the transfer function of a suitable neural architecture. Even in this case,

however, Kolmogorov theorem turns out to be of invaluable help, as it lets us to indi-

viduate a special class of functions, the ones implemented in an exact way through a

well specified architecture made by suitably chosen neural-like units. Once given such a

class of functions, one can take advantage of the results and of the methods of Functional

Analysis (see, e.g., Rudin, 1973; 1987) in order to know what are the approximation

capabilities of such a class with respect to more general functional classes. In this way,

for example, Hornik, Stinchcombe and White (1989) were able to prove that multilayered

feedforward neural networks containing at least a layer of sigmoidal units can act as uni-

versal approximators of a whatever input-output transfer function, with arbitrary degree

of approximation, provided the number of units and the connection weights be properly

chosen. Analogous results were obtained by other authors (cfr. Park & Sandberg, 1993)

for multilayered feedforward networks containing RBF units.

The approximation capabilities of neural networks, however, go far beyond input-

output relationships. Namely, these systems can mimic, with any degree of approxi-

mation, even the behaviour of classical continua, whose dynamics is described by partial

differential equations. The easiest way for reproducing the behaviour of continuous media

is to make resort to the aforementioned Cellular Neural Networks (CNN). These latter

can be described (cfr. Chua & Roska, 1993) as systems of nonlinear units arranged in

one or more layers on a regular grid. The CNN differ from other neural networks since

the interconnections between units are local and translationally invariant. The latter

property means that both the type and the strength of the connection from the i-th to

the j-th unit depend only on the relative position of j with respect to i . At every time

instant to each unit of a CNN are associated two values: its (internal) state , denoted by

vm
i (t) , and its output , denoted by um

i (t) . Here the index m denotes the layer to which

the unit belongs and the index i denotes the spatial location of the same unit within the

layer. The general form of the dynamical laws ruling the time evolution of these functions

is:

dvm
i (t)/dt = −g[vm

i (t)] +
∑

q

∑
k

aqm
k [uq

i+k(t), u
m
i (t);Pqm

ak ] (11a)

um
i (t) = f [vm

i (t)]. (11b)

In these formulae the function g describes the inner dynamics of a single unit, whereas

f denotes the output function (often of sigmoidal type). Besides, the sum on the index q

runs on all layer indices, and the sum on the index k runs on all values such that i + k

lies in the neighborhood of i . Finally, the symbol P qm
ak denotes a set of suitable constant
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parameter values entering into the explicit expression of the connection function aqm
k .

Such parameters, whose values are independent from i , are referred to as connection

weights or templates .

In the case of a single-layered CNN, in absence of inner dynamics, and when the

output function coincides with the identity function, the (11) can be reduced to the

simpler form:

dvi(t)/dt =
∑

k

ak[vi+k(t), vi(t);Pak]. (12)

Let us now show, through a simple example, how a continuum described by partial

differential equations can be approximated by a suitable CNN. To this end, let us choose

a 1-dimensional medium ruled by the celebrated Korteweg-De Vries equation:

∂ϕ/∂t + ϕ(∂ϕ/∂x) + δ2(∂3ϕ/∂x3) = 0, (13)

whose solution describes traveling solitary waves. Here δ2 is a suitable parameter. If

we introduce a discretization of spatial coordinates, based on a fixed space step Δx , the

field function ϕ(x, t) is replaced by a set of time-dependent functions vi(t) (i = 1, 2, . . .

, N ) , and (13) is replaced, in turn, by the set of ordinary differential equations:

dvi/dt = −vi[(vi+1 − vi−1)/Δx]− δ2[(vi+2 − 2vi+1 + 2vi−1 − vi−2)/(Δx)3]. (14)

If we compare (14) with (12), it is easy to see that this set of equations describes the

dynamics of a CNN, whose connection function is given by:

ak = wkvi+k + rkvivi+k. (15)

In such a CNN the neighborhood of the i-th unit goes from the (i + 2)-th unit to the

(i−2)-th unit, so that the index k can assume only the values +2, +1, 0, -1, -2. A direct

inspection of (14) shows that the values of connection weights wk and rk are given by:

w2 = −δ2/(Δx)3, w1 = 2δ2/(Δx)3, w0 = 0, w−1 = −2δ2/(Δx)3, w−2 = δ2/(Δx)3,

r2 = 0, r1 = −1/Δx, r0 = 0, r−1 = 1/Δx, r−2 = 0.

A procedure like the one described in this example allows us to find a precise relation-

ship of equivalence between a classical continuous medium and a CNN (see also Roska et

al., 1995).

A more complex, and still unanswered, question is whether neural networks are or

not universal approximators of quantum fields. To this regard, we remind that from a

long time physicists stressed a close analogy between the lattice version of Euclidean for-

mulation of Quantum Field Theory (QFT) and the statistical mechanics of a system of

spin (that is, neural-like) particles, coupled via next-neighbor interactions (cfr. Mézard,
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Parisi & Virasoro, 1987; Montvay & Münster, 1997). The existence of such an analogy

constitutes, of course, a strong motivation for studying neural networks as possible im-

plementations of QFT. Roughly speaking, neuronal units activations should correspond

to fermionic source fields and connection weights should represent bosonic gauge fields

mediating the interactions between fermions. Suitable restrictions on the possible neu-

ronal interconnections (limited to neighboring units) should grant for the fulfillment of

requirements such as microscopic causality. Besides, taking both a thermodynamical and

a continuum limit on neural networks descriptions, we should recover the usual quantum

field-theoretical ones. However, despite the attractiveness of such a picture, the detailed

specification of a precise equivalence relationship between neural networks and QFT is

still lacking. On the contrary, there are a number of no-go theorems (cfr. Svozil, 1986;

Meyer, 1996), which evidence how the search for such an equivalence be a very difficult

affair.

Along with the results suggesting that neural networks can be used as universal ap-

proximators of systems of very general nature, seemingly having little to do with neural-

like behaviours, there are other results, complementing the previous ones, evidencing how

neural networks behaviours can also be described in non-neural terms. In most cases such

results came from attempts to derive the macroscopic, that is global, features of neural

network dynamics starting from the knowledge of its microscopic, neural-like, features.

To this regard we can roughly individuate two different approaches: a statistical one, and

a field-like one. The statistical approach tries to extract from microscopic neural dynam-

ics, by resorting to methods of Probability Theory and Statistical Mechanics, dynamical

laws ruling the time evolution of suitable average quantities, such as the average network

activation, its variance, and so on. Such an approach was fostered by S.Amari and his

school (cfr. Amari, 1972; Amari et al., 1977; Amari, 1983), but received a number of

important contributions by other authors (cfr. Rössler & Varela, 1987; Clark, 1988). As

example of results obtained within this approach we can quote the macroscopic law of

evolution for the average output activity u(t), as deriving from the microdynamics of a

network of reciprocally interconnected binary units, described by:

xi(t + i) = F [Σjwijxj(t)], (16)

where wij denotes the (fixed) connection weights, and F (z) = 1 if z > 0 , whereas

F (z) = -1 if z <0; in this case Amari was able to derive from (16) that the time evolution

of u(t) is ruled by the following integral equation:

u(t + 1) = [2/(2π)1/2]
V u(t)

∫
0

exp(−y2/2)dy, (17)

where:

V = W (N)
1/2/σw ,

and W , σwdenote, respectively, the mean and the variance of connection weights.

As regards the other approach, the field-like one, it is based on some sort of continuum

limit, taken on a neural network, which reduces this latter to a space-time dependent
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activation field. Between the first contributions to this approach we remind the celebrated

Wilson-Cowan model of macroscopic behavior of neural assemblies (cfr. Wilson & Cowan,

1973), based on the pair of integrodifferential equations:

μ∂E/∂t = −E + (1− reE) Fe[αμ(ρeE ⊗ βee − ρiI ⊗ βie + P )] (18a)

μ∂I/∂t = −I + (1− riI) Fi[αμ(ρeE ⊗ βei − ρiI ⊗ βii + Q)], (18b)

where E(x, t), I(x, t) are, respectively, the average activities of excitatory and in-

hibitory neurons, ρe(x, t) and ρi(x, t) are their densities, βee(x) , βie(x) , βei(x) , βii(x)

denote coefficients (it would be better to call them ”fields”) of hetero- or autoinfluence of

excitatory and inhibitory neurons, α, μ, re, ri are suitable positive parameters, whereas

P (x, t) and Q(x, t) are suitable external inputs. Besides, Fe and Fi denote activation

functions (of sigmoidal type) of their arguments, and the symbol ⊗ denotes the spatial

convolution integral operator. The equations (18.a) and (18.b), or their generalizations

or specializations, exhibit a very rich bifurcation phenomenology, including spatial and

temporal pattern formation (cfr. Ermentrout & Cowan, 1980; Ermentrout, 1998), and

rhythm or wave generation (cfr. Osovets et al., 1983, Paluš et al., 1992, Jirsa et al, 1994,

Pessa, 1996; Haken, 1996; Jirsa & Haken, 1997; Robinson et al., 1998; Frank et al., 2000).

Summarizing, we can assert that neural networks are endowed with two fundamental

properties: on one hand, they act as discrete universal approximators of most systems,

even if described by continuous variables, and, on the other hand, even if characterized

by a discretized structure, from a macroscopic point of view they behave like continuous

systems of a very general nature. Just such a circumstance was the cause for the interest

of an ever growing number of researchers in behavioural features of neural networks: the

study of neural networks appears as, more or less, equivalent to the building of a General

Systems Theory (in the sense already proposed by Von Bertalanffy, 1968).

4. What Neural Networks Can Do

The most interesting ability exhibited by neural networks is that they can learn from

experience. All their properties, including the approximation capabilities described in

the previous paragraph, can be acquired without resorting to a preventive careful design

of their structure, but only submitting them to a suitable set of examples, that is of input

patterns. Of course, suitably chosen learning laws are also needed, but these latter are

far simpler than any conceivable set of symbolic rules specifying in detail how to obtain

the wanted performances without large errors.

It was just such an ability which, at first sight, suggested to researchers, such as the

ones supporting the connectionist approach (see, to this regard, McClelland & Rumelhart,

1986; Smolensky, 1988), that neural networks should be considered as the prototypes of

systems exhibiting emergent behaviors. Namely, if we compare the (generally random)

structure of connection weights of a network before a learning session with the same

structure after the learning occurred, we will find that this latter cannot be longer con-

sidered as random (even if it can appear as very complex), because it will be organized
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in a so fine way as to give rise to well-structured network behaviors, whose occurrence,

on the other hand, would be impossible before the learning process. Notwithstanding,

such a structure is not the product of the action of a designer, but results only from the

combination of a number of suitable input patterns and of the choice of a simple learning

law. What is to be underlined is that, generally, the knowledge of these ingredients isn’t

enough per se for forecasting (at least from a mathematical point of view) the detailed

features of organized network behaviors taking place after the learning. Thus, these fea-

tures can rightly be considered as emergent, in the same sense in which we call emergent

a new ability (such as doing algebra or understanding a foreign language) acquired by a

student after reading a good textbook or attending the lectures of a good teacher. Such

arguments, however, are formulated in rather intuitive terms, and we need a deeper anal-

ysis of effective learning capabilities of neural networks before dealing with the question

whether neural networks exhibit or not emergence. A short review of the analysis so far

done on learning processes in neural networks will be just the subject of this paragraph.

We remark, to this regard, that a survey of the field of neural network learning is a

very complicated task, owing to the huge number of learning methods so far proposed. In

general these methods consist in algorithms which dictate the modifications to be done on

connection weights (or on other parameters) as a function of suitable external influences.

They can be grouped into the five fundamental categories described below.

• Supervised learning, based on the presentation to the network of examples, each one

constituted by a pattern pair: the input pattern, and the corresponding wanted, or

correct, output pattern. The modification of connection weights is determined by the

output error, that is by a suitable measure of the difference existing between the

wanted output pattern and the output pattern effectively produced by the network.

This kind of learning is largely, and most often successfully, used to obtain neural

networks realizing a given input-output transfer function.

• Unsupervised learning, in which each example consists only in an input pattern, and

the concept itself of correct output pattern is devoid of any meaning. The modifi-

cation of connection weights at a given instant of time is determined by the local

pattern presented in input at the same time, and by the result of the competition be-

tween suitable categorization units. This kind of learning is very useful to clusterize

(that is, group into categories) a complex data set.

• Reinforcement learning, in which we have the presentation to the network of time

sequences of examples, each one constituted by an input pattern, by the correspond-

ing output pattern (action or decision), and, eventually, by the reinforcement signal

received from the environment as a consequence of the output pattern produced.

The modification of connection weights aims to maximize the total amount of pos-

itive reinforcement (the reward) received as a consequence of the whole behavioral

sequence. Such a type of learning is very useful to design systems able to adapt to

a rapidly changing, unpredictable, and noisy environment.

• Rote learning, in which the connection weights are modified in a brute way, according

to a fixed law, under the direct influence of input patterns, or of suitable input-output
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associations. Such a kind of learning is useful to design associative memories, in

which external patterns (or input-output associations) are stored, and subsequently

recalled following the presentation of suitable cues.

• Evolutionary learning, in which the connection weights, and most often the whole

network architecture change as a function of the fitness value associated to suitable

behavioral features of the network itself. Such a value is related to a given measure of

the efficiency of the network in dealing with problems posed by external environment,

a measure which, obviously, was chosen by the designer on the basis of his needs or

of his goals.

Each kind of learning is associated to a number of preferred architectural implementa-

tions, even if there’s no necessary connection between a learning process and its network

realization. Besides, resorting to suitable prototypical architectures, some kinds of learn-

ing were studied from a theoretical point of view, in order to characterize them with

respect to the convergence of adopted learning laws. Most studies dealt with supervised

learning, both by using methods of optimization theory (cfr. Bartlett & Anthony, 1999;

Bianchini et al., 1998; Frasconi, Gori & Tesi, 1997) and from a statistical mechanics

perspective (Sollich & Barber, 1997; Saad, 1998; Mace & Coolen, 1998; Marinaro & Scar-

petta, 2000). A consistent number of other studies, traditionally done within the context

of spin-glass physics, was devoted to rote learning (Domany, Van Hemmen & Schulten,

1996; Kamp & Hasler, 1990; Amit, 1989). A smaller number of papers and books dealt

with unsupervised learning (cfr. Hinton & Sejnowski, 1999; Cottrell, Fort & Pagès, 1997).

Both reinforcement learning and evolutionary learning, even if extensively studied under

many respects, appear actually as very difficult topics when one is interested to assess

their convergence features.

The results so far obtained from these studies can be, in very broad terms, thus

summarized:

(1) the dynamics of most popular supervised learning algorithms (such as, e.g., the

celebrated error-backpropagation ) can be described both from a microscopic and a

macroscopic point of view; this latter, in particular, allows for a prediction of the

macroscopic features of the attractors of such a dynamics, and of their dependence on

the values of control parameters related to network architecture and/or to learning

law;

(2) we still lack a method for avoiding the existence of local minima in error surfaces,

holding for every possible kind of training set; in other words, even if a neural

network can, in principle, approximate with a precision whatsoever every possible

input-output relationship, we still lack a supervised learning algorithm able to grant

for the reaching of such an approximation, or, at least, able to forecast, for whatever

kind of training set, whether such a goal will be attainable or not through a learning

from experience; the solution of such a problem, on the other hand, appears to be

NP-complete;

(3) we have actually no exact method at disposal to predict in advance the detailed

outcome of a retrieval dynamics, triggered by a suitable cue pattern, following a
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rote learning; a qualititative statistical prediction of the macroscopic features of

such a dynamics is, however, possible, provided we work in the thermodynamical

limit;

(4) in the case of unsupervised learning implemented through Kohonen’s Self-Organizing

Maps (Kohonen, 1995), the only one so far studied, there are methods to predict the

asymptotic state of connection weights and of the form of clusters obtained at the

end of learning procedure, provided the input pattern statistical distribution and

the neighborhood function be known in advance (see also Ritter & Schulten, 1988;

Erwin, Obermayer & Schulten, 1992); these methods, however, work only when

input and categorization layer are 1-dimensional; in the multidimensional cases no

general method is available.

These results evidence how the general theory of learning in neural networks be still in

a very unsatisfactory state: the best thing neural networks are able to do is to learn

but, unfortunately, we don’t know why, how, and when they learn. Our incapability of

controlling them is reflected in a number of hard conceptual problems that the neural

network models so far proposed are unable to solve. Between these problems we will

quote the following ones:

• The Catastrophic Interference Problem , related to supervised learning (and

partly to rote learning), consisting in the fact that the learning of new input-output

relationships gives rise to a dramatic decay of performance relative to previously

learned relationships (cfr. McCloskey & Cohen, 1989; Ratcliff, 1990);

• The inability to represent complex symbolic structures , due to the fact

that the vectors used to represent activation patterns of neural units are unsuitable

to code the complex structural relationships occurring within a data set (or within

human knowledge), such as, e.g., tree stuctures;

• The Binding Problem , stemming from the fact that a neural network cannot

learn from experience alone to correctly bind into a unique, holistic and global,

entity a number of different local features independently from the very nature of the

features themselves;

• The Grounding Problem , consisting in the fact that a neural network is unable

to connect higher-level symbolic representations with lower-level space-time distri-

butions of physical signals coming from the environment (cfr. Harnad, 1990).

All solutions to these problems so far proposed (see, to make some quotations, Pessa &

Penna, 1994; French, 1999; Nenov & Dyer, 1993, 1994; Medsker, 1995; Chalmers, 1990;

Shastri & Ajjanagadde, 1993; Van der Velde, 1995; Wilson et al., 2001; Pessa & Terenzi,

2002) were based on neural architectures which went far beyond the standard complexity

of most popular neural networks and, in a way or in another, were strictly inspired

by biological or cognitive findings. On the other hand, such a circumstance seems to

point to a possible connection between our inability in predicting and controlling neural

network behaviors, when grounding only on mathematical arguments, and the fact that

neural networks themselves could be particular protoypes of systems exhibiting emergent

behaviors. In other words, the results so far obtained on neural network learning show that
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the outcomes of the latter process are, in many cases, unpredictable, even if compatible

with mathematical descriptions of neural network themselves, just as it occurs for the

outcomes of a human learning process. The only way for designing neural networks

endowed with high-level behavioral features would, therefore, be the one of imitating, as

closely as possible, the design principles underlying biological or cognitive architectures.

A further discussion of this topic, however, calls for a more precise definition of what we

mean by using the word ‘emergence’.

5. What is Emergence?

The topic of emergence is rather old within the history of ideas of twentieth century:

it was proposed for the first time already in 1923 within the context of the doctrine

of ”emergent evolutionism”, advanced by C.L. Morgan (cfr. Morgan, 1923). However,

this subject began to become popular only in the Eighties, owing to the explosion of the

research on deterministic chaos. This is due to the fact that chaotic deterministic behavior

appears as ”unpredictable” by definition, and ”new” with respect to the expectancies of

physicists even if it can be produced by using very simple deterministic computational

rules, such as the one of Feigenbaum’s logistic map (Feigenbaum, 1983):

xn+1 = 4λxn(1− xn), 0 < λ < 1, 0 < x0 < 1. (19)

Who could think of the sequence of numbers generated by such simple recursion

formula as a chaotic one? However, this is what happens when λ > 0.892.... Thus it is

spontaneous to qualify such phenomena as ”emergent”.

Despite the interest for emergence triggered by studies on chaotic deterministic be-

haviors, the need for a more precise definition of the concept of ”emergence” arose only

in the last decade, when researchers became to build Artificial Life models. Within this

context it was coined the new expression ”emergent computation”, to denote the appear-

ance of new computational abilities resulting from the cooperative action of a number

of individual agents interacting according to simple rules (cfr. Forrest, 1990; Langton,

1989, 1994; Langton et al., 1992). An important conclusion resulting from the debate on

emergence within Artificial Life researchers is that the concept of ”emergence” cannot

be defined in a absolute, objective, way, but is rather bound in an indissoluble way to

the existence of an observer, already equipped with a model of the system under study,

in turn designed to attain some goals of the observer itself. Then, a model behavior can

be said to be emergent if it doesn’t belong to the category of behaviors which were the

goals of the design of the model itself. According to this definition, chaotic behaviors pro-

duced by (19) are emergent, as the elementary mathematics contained in this formula is

normally used for the goal of producing only simple, deterministic, predictable behaviors.

A further important contribution to this topic was given by Crutchfield (1994), who

introduced a distinction between three kinds of emergence:

e.1) intuitive, corresponding to the rough identification of ”emergence” with ”novelty”;

e.2) pattern formation, in which a pattern is said to be ”emergent” when it occurs
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as a non-trivial consequence of the model structure adopted, even if it could be forecast

in advance on the basis of a sophisticated mathematical analysis of the model itself; this

is the case, for example, of some macroscopic models of self-organization making use of

bifurcation phenomena such as the ones we will discuss below;

e.3) intrinsic emergence, in which not only the occurrence of a particular behavior

cannot be predicted in advance (even if it is compatible with model assumptions), but

such an occurrence gives rise, in turn, to a deep modification of system’s structure, in

such a way as to require the formulation of a new model of the system itself; this is

the case, e.g., of the emergence of new computational abilities (see Sipper, 1997; Suzuki;

1997).

For many years the only kind of emergence taken into consideration by model builders

was pattern formation, usually labelled as Self-Organization, for reasons we will explain

later. All models of self-organization are described in terms of suitable macrovariables,

whose values depend on time and, eventually, on other independent variables. The focus

is on time evolution of these macrovariables, ruled by suitable evolution equations, con-

taining a number of parameters, and associated to given initial or boundary conditions. It

is easy to understand that the most important forecasting one can derive from these mod-

els deals with the number and the type of attractors of dynamical evolution undergone

by macrovariables. In turn, these features of attractors depend on the actual values of

parameters entering into evolution equations and (in a more complicated way) on initial

or boundary conditions. Such a dependency can be studied by resorting to mathematical

methods of dynamical systems theory (cfr. Glendinning, 1994; Guckenheimer & Holmes,

1983).

Within this framework, the most studied phenomenon has been the one of bifurcation.

This term denotes a change of the number or of the type of attractors as a consequence

of a change of parameter values. In the most simple cases, a bifurcation takes place

when the value of a parameter, the so-called bifurcation (or critical) parameter, crosses a

critical value, which thus appears as a separator between two structurally different states

of affairs: the one corresponding to values of bifurcation parameter lesser than critical

value, and the other corresponding to values of bifurcation parameter greater than critical

value. Such a circumstance suggests a close analogy between bifurcation phenomena and

phase transitions taking place within physical systems. Namely the two different states

of affairs, before and after critical value, can be viewed as analogous to different phases

of matter, the critical value itself being viewed as analogous to the critical point of a

phase transition. We shall see later, however, that such an analogy breaks down when

we take into account the fact that the values of macrovariables undergo unavoidable

fluctuations,due both to the limited sensitivity of our measuring instruments, and to the

coupling between the system and a noisy environment. Despite that, most researchers,

starting from Prigogine (cfr. Nicolis & Prigogine, 1977), identified bifurcation phenomena

with self-organization phenomena, i.e. with sudden changes in the structural properties

of system behavior (typically from a disordered behavior to an ordered one) taking place

when a parameter crosses a critical value.
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We remind, to this regard, that bifurcation phenomenology is very rich, so rich as to

offer a potential description of most pattern formation processes. Usually mathematicians

distinguish between three different classes of bifurcations phenomena:

b.1) subtle bifurcations, in which the number of attractors is kept constant, but their

type undergoes a change; the most celebrated example of such a class is Hopf’s bifurcation,

in which an attractor, having the structure of an equilibrium point, is changed, once a

parameter crosses a critical value, into a limit cycle, i.e. a periodic motion; such a type

of bifurcation plays a capital role in describing the birth of self-oscillatory phenomena;

b.2) catastrophic bifurcations, in which the number of attractors changes; an elemen-

tary example of such a class of bifurcations is given by the unidimensional motion of a

mass point in a force field characterized by the potential:

U(x) = k(x2/2) + λx4 + α, (20)

where λ > 0, α > 0 are parameters whose value is kept constant, whereas k is chosen

as bifurcation parameter, and whence we suppose that its value can change as a con-

sequence of external influences; straightforward mathematical considerations show that,

when k > 0, the potential U (x) will have only one minimum, corresponding to a stable

equilibrium point, located in x= 0, and having the value U (0) = α ; on the contrary,

when k < 0 , the potential U (x) will have two equivalent minima, located in x1=

(|k| /4λ)
1/2, and x2= -(|k|/ 4λ)

1/2, and corresponding to two stable equilibrium points, in

which the value of U (x)is given by:

U (x1) = U (x2) = α + (5k2/16λ) ;

thus the critical value k = 0 will mark the passage from a situation characterized by

only one attractor to a situation characterized by two attractors;

b.3) plosive bifurcations, in which the attractor size undergoes a sudden, discontinuous,

change as the bifurcation parameter crosses the critical value; a very simple example of

a plosive bifurcation is given by the system obeying the nonlinear differential equation:

dx/dt = αx{x2 − (α + 1)x + [(α2 + 1)/4]}, (21)

where α denotes the bifurcation parameter; the equilibrium points (attractors) of (21)

are defined by the condition:

dx/dt = 0, (22)

which implies:

αx{x2 − (α + 1)x + [(α2 + 1)/4]} = 0; (23)

a straightforward algebra then shows that, when α < 0 , the equation (23) has one

and only one real solution, given by x = 0 ; thus, a linearization of (21) around such a

solution gives the following equation ruling the behavior of a small perturbation ξ of the

zero solution:
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dξ/dt = α[(α2 + 1)/4]ξ; (24)

as the coefficient of ξ in the right-hand member of (24) is negative for α < 0 ; we can

conclude that the attractor (equilibrium point) corresponding to x = 0 ; is stable for α <

0 ; we can now observe that, when α = 0 (the critical value), the equation (23) has two

real roots: again x = 0 , and the further root x = 1/2 (with double multiplicity); further,

when α > 0 , (23) has three real roots , i.e. the previous root x = 0 and the other two

roots:

x = [α + 1± (2α)1/2]/2; (25)

a linear stability analysis around each of these three roots shows that, when α > 0 ,

both roots x=0 and x = [α + 1 + (2α)
1/2]/2 correspond to unstable equilibrium points,

whereas the third root x = [α + 1 -(2α)
1/2]/2 represents the only one stable equilibrium

point; thus, the bifurcation taking place for α=0 gives rise to a sudden change from a

stable equilibrium state, corresponding to x = 0 , to a new stable equilibrium state,

corresponding to x = 1/2 , or lying near to this value for α positive and small enough;

such a sudden change of size of the attractor is an example of a plosive bifurcation.

We remind further that mathematicians introduced another classification of bifurca-

tions into two categories: local and global (cfr. Ott, 1993). A local bifurcation gives rise

to changes in attractor structure only in a small neighborhood of phase space of the sys-

tem under study. On the contrary, a global bifurcation results from a connection between

distant attractor, and gives rise to sudden structural changes of large domains of phase

space. The different categories of bifurcations we sketched before are object of intensive

study by mathematicians. We still lack, however, a general theory of bifurcation covering

all possible phenomenologies. Whereas for particular types of bifurcation there exist well

know algorithms (implemented even though computer programs for symbolic manipula-

tion) which let us forecast their phenomenology in a detailed way, in other cases we are

still forced to resort only to numerical simulations. Anyway, mathematicians and theo-

retical physicists evidenced how nonlinear systems can always be described by suitable

canonical forms, valid near bifurcation points. In this context between the most useful

tools we will quote Haken’s Slaving Principle, wich lies at the hearth of Synergetics (cfr.

Haken, 1983).

Despite the attractiveness of the concept of bifurcation and of the underlying the-

ory, in the past times it was not so popular between neural network modellers. For this

reason the topic of emergence in neural networks, even if restricted only to pattern for-

mation, was somewhat neglected. There have been, however, notable exceptions. We

remind, to this regard, the neural field theories, previously quoted and inspired by the

pioneering model of Wilson and Cowan (cfr. Ermentrout & Cowan, 1980; see also Pessa,

1988), whose prototype is the “Field theory of self-organizing neural nets” put forward

by Amari (cfr Amari, 1983). This approach experimented a resurgence from the end of

the Eighties, determined mostly by the fast development of the so-called Statistical Field

Theory (Mézard, Parisi & Virasoro, 1987; Parisi, 1988). Following the suggestions of
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this latter, a number of researchers tried to describe the dynamics of a neural network

as a Markovian process ruled by a suitable master equation (see, to this regard, Rössler

& Varela, 1987; Clark, 1988; Coolen & Ruijgrok, 1988; Coolen, 1990). From the latter,

as is well known from the theory of stochastic processes (cfr. Van Kampen, 1981), it is

possible to derive a partial differential equation, that is the Fokker-Planck equation (or its

generalizations), describing the time evolution of the probability density of microscopic

network states. By using a suitable mathematical machinery it is possible to derive, in

turn, from this equations a number of differential equations (total or partial) ruling the

time (or space-time) evolution of a number of given macrovariables, of course defined

through moments of probability density. These equations should be identified with the

ones to which one should apply the methods of bifurcation theory previously described.

Such an approach has a number of advantages, the most relevant one being to make

clear that pattern formation, or self-organization, is a phenomenon which takes place only

at a macroscopic level. This suggests that such a form of emergence is not intrinsic if we

study it starting already from a macroscopic point of view, but it could appear as intrinsic

if studied from a microscopic point of view. This would be the case, for instance, if the

statistical fluctuations of the microvariables could trigger the occurrence of collective

effects involving a large number of neural units. To answer these questions, however, is

not so easy, owing to the remarkable mathematical difficulties involved in the derivation

of the macroscopic equations from the microscopic equations describing the behavior of

the single neural units. As a matter of fact, this approach has been applied so far only to a

limited number of cases. Between them, we will quote the celebrated Hopfield associative

memory model based on rote learning (Hopfield, 1982), the most extensively studied from

this side (cfr. Domany, Van Hemmen & Schulten, 1996), the online supervised learning

by a multiplayer perceptron through the celebrated error-backpropagation rule (cfr. Saad,

1998), and the online supervised learning in RBF networks (cfr. Marinaro & Scarpetta,

2000).

We remind here that, in more recent times, a completely new procedure was intro-

duced, in order to translate every classical description of entities, interacting through suit-

able reaction mechanisms (like particles, molecules, or chemical species), into a quantum-

field theoretical description. Without entering into details on such a procedure (see, e.g.,

Lee & Cardy, 1995), we will remark that it shows the existence of a previously unsus-

pected link between classical and quantum theories of self-organization. The importance

of such a connections stems from the fact that the latter, as we shall see in the next

paragraphs, appear as the only ones able to exhibit intrinsic emergence. As regards the

reformulation of neural network dynamics in terms of reactions between different chemical

species, this can be done in many different ways. In the following we will limit ourselves

to present one possible way, proposed many years ago by Schnakenberg (1976).

To this regard let us consider, for simplicity, a neural network with fixed connection

weights, whose units ( N will denote their total number) can have only a finite number

K of possible activation levels. The total number of possible network states will therefore

be NK . To each one of these possible states we will associate, at every time instant t
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, its probability of occurrence pi(t), with the index i running from 1 to NK . The time

evolution of pi(t) will be ruled by the master equation:

dpi(t)/dt =
∑

j

[〈i|T |j〉pj(t)− 〈j|T |i〉pi(t)], (26)

where the symbol 〈i|T |j〉 denotes the transition rate (in turn depending on connection

weight values) from the state j to the state i . Let us now introduce NK different chemical

species, with the symbol ci denoting the concentration of the i-th species, whose reciprocal

reactions obey the rate equations:

dci(t)/dt =
∑

j

[〈i|T |j〉cj(t)− 〈j|T |i〉ci(t)]. (27)

If we introduce a set of probabilities pi(t), associated to the concentrations ci and

given by:

pi(t) = ci(t)/
∑

j

cj(t), (28)

it is easy to see that these latter obey just the master equation (26), describing the

neural network dynamics.

From the definitions previously proposed, it is clear, however, that the most interesting

models of emergent phenomena should exhibit intrinsic emergence. As regards models

endowed with such a property, we will subdivide them into two main classes:

m.1) ideal models of emergence, characterized by:

(1) the identification of macroscopic phenomena with the ones corresponding to infinite

volume limit (thermodynamical limit),

(2) the possibility of deriving microscopic dynamical equations from a suitable general

maximum (or minimum) principle, or from a suitable variational principle;

m.2) not ideal models of emergence, characterized by:

(1) the existence of a finite, predefined and fixed, volume into which the system is

contained,

(2) the derivation of microscopic dynamical equations only from phenomenological ar-

guments.

A very interesting, but still unsolved, question is whether models belonging to class m.2)

can be reformulated or not in such a way as to be classified as belonging to class m.1).

The interest in such a question stems from the fact that it is very difficult to find criteria

letting us decide whether intrinsic emergence exhibited by a not ideal model results from a

particular, fortunate, choice of system’s volume (and whence of boundary conditions), and

of the form of microdynamical equations, or from general principles underlying the model

itself. It is to be underlined, to this regard, that the introduction of a finite volume within

a model of emergence, even if it appears, at first sight, as natural and realistic, could be

devoid of any meaning. Let us clarify this circumstance within the context of natural or

artificial neural networks. We start by remarking that each volume measure, within our
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system, is possible only owing to the presence of a suitable measuring device (physical

or ideal), characterized by an elementary volume V0. The latter can be considered as

the unit volume (at least as regards the particular measuring device introduced). At the

same time V0 defines the minimal volume, under which no further volume measure is

possible. Thus, if we have a given spatial domain of volume V , its measure, according to

the particular measuring device described above, is obtained by specifying the number

of times, denoted by v, in which V0 enters into V (according to a suitable measuring

procedure). Whence we will have that:

v = V/V0. (29)

When V0 tends to zero, by keeping fixed V , obviously v tends to infinity. But such a

circumstance is just the one occurring in natural or artificial neural networks. Namely in

this case our uncertainty about the locations of natural or artificial neurons is vanishing

or very small, because we consider them as lying in fixed sites, whose spatial position is

known in advance with almost unlimited precision. This is equivalent to make V0 tending

to zero, so that, even if the volume V occupied by the system is zero, its measured volume

practically tends to infinity, making the infinite volume limit a more realistic choice than

the one of limiting ourselves only to finite volumes.

The considerations about emergence, made in this paragraph, should, however, be

supplemented by suitable exhibitions of concrete models of emergence, ideal or not ideal.

In the following we will shortly present a possible framework for building ideal models of

intrinsic emergence: the one of quantum theory.

6. Quantum Models

The history of quantum models of cognitive processing began in 1967 with the publi-

cation of the seminal paper by Ricciardi and Umezawa on the usefulness of application

of methods of Quantum Field Theory (QFT) to study cognitive processes taking place

as collective effects in assemblies of brain neurons (Ricciardi & Umezawa, 1967). This

paper gave rise to the building of a number of interesting models of cognitive processes

(mainly of memory operation), based on QFT, and proposed mainly by Umezawa and his

pupils (Stuart, Takahashi & Umezawa, 1978, 1979; Jibu & Yasue, 1995; Vitiello, 1995).

Starting from very different premises, in the same period a number of other researchers

(cfr. Stapp, 1993) tried to apply the methods of quantum theory to the study of con-

sciousness. Both lines of research produced, as a consequence, an ever growing interest

for the applications of models based on quantum theory to the description of a number

of features of cognitive system operation (cfr. Pribram, 1993; Nanopoulos, 1995; Jibu &

Yasue, 1997).

Why should quantum models be so attractive for neural networks modellers? Essen-

tially because they offer convincing, and powerful, mechanisms to explain the occurrence

of long-range orderings (i.e. macroscopic effects) within sets of locally interacting mi-

croscopic entities. And these mechanisms are the only ones, so far known, able to fully
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describe the sudden structural changes taking place in complex system, and called, in

physics, phase transitions. Such changes, as a matter of fact, appear to underlie the very

nature of cognitive development in humans and animals: learning, insight, acquisition

of new cognitive skills, understanding a language or a mathematical theory, abstraction,

creative thinking, are all examples of deep restructurations (often of global nature) of

cognitive system, which appear as unexplainable within conventional approach to cog-

nitive science, based on symbolic processing paradigm. Quantum models offer, on one

hand, a general theoretical framework for describing these changes through a more con-

venient formal language, and, on the other hand, a tool for investigating what features

of the changes themselves could be taken into consideration, and eventually forecast and

controlled. Thus, these models should constitute the very hearth of a new ”quantum”

cognitive science, much more powerful than classical cognitive science born in the Sev-

enties. The arguments supporting these claims are complex and require some technical

knowledge coming from theoretical physics. For this reason we will deserve the next para-

graph of this paper to a discussion of the advantages of quantum models over classical

ones, in order to examine the validity of the thesis, according to which only quantum

models can describe cognitive processes as collective effects emergent from the coopera-

tive interaction of microcognitive units, and only quantum models can describe structural

changes and phase transitions. Within this paragraph, instead, we will limit ourselves to

a short listing of some features of quantum models.

To this regard, we will begin by reminding that quantum models can be subdivided

into two main categories: the ones making use of quantum mechanics (QM), and the ones

making use of Quantum Field theory (QFT). Even if the domain of application of both

types of models is virtually unlimited, historically they were applied almost exclusively to

description of behavioral features of subatomic particles. Such a circumstance influenced

so heavily the concrete development of these models, that today is practically impossible

to mention their features without making reference to the concept of particle. Of course,

this isn’t a logical necessity, but rather a practical necessity. It prevented, however, from

an application of quantum models to domains different from particle physics (such as the

one of cognitive processing), in which the concept of particle appears as useless. In recent

times the situation is slightly changing, but we still need a more general formulation

of quantum models, able to exploit their logical potentialities without being forced to

describe every process as due to ”interactions” between suitable ”particles”.

Let’s now turn to QM. It deals (for a textbook see, for example, San Fu Tuan, 1994)

with systems constituted by a finite, and fixed, number of particles, contained within

a finite, and fixed, volume of space (even if infinite volumes are allowed). Physical

quantities characterizing these particles, however, cannot be all measured simultaneously

with arbitrary precision. In the most simple and popular form, such a constraint is

expressed, for a single particle, through the celebrated Heisenberg uncertainty principle:

ΔpΔq ≥ h/4π, (30)

Δp and Δq being, respectively, the uncertainties associated with the momentum
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and with the position of the particle. As usual, h denotes Planck’s constant. Such an

uncertainty derives from two causes:

u.1) the perturbation on particle behavior exerced by the act of measure itself;

u.2) the fact that particles are embedded, and interacting with, into an intrinsically

noisy environment.

A first consequence of such an uncertainty is that a complete characterization of

particle dynamical state with unlimited precision is impossible. One is, then, forced

to introduce the concept of representation of the state of system being considered. In

rough, nontechnical, terms the choice of a representation consists in selecting a subset of

dynamical variables describing the state of the system, such that all variables belonging

to the subset can be measured simultaneously with arbitrary precision. In a sense, owing

to uncertainty principle and its generalizations, every representation can offer only a

partial description of system’s dynamics. However, an important theorem, proved by Von

Neumann (cfr. Von Neumann, 1955), asserts that in QM all possible representations are

reciprocally equivalent. This means that they give rise to the same values of probabilities

of occurrence of results of all possible measures relative to the physical system under

consideration, independently from the particular representation chosen.

A second consequence of uncertainty is that particles cannot be longer considered as

localized objects (like in classical physics), but rather as diffuse entities, virtually spreaded

over entire space. Thus, given a particle, we can only speak of its most probable location

at a given time, by remembering, however, that in each space position (within allowable

space volume) there will be a nonzero probability (even if in most cases very small) of

finding the particle itself. Besides, given two particles whatsoever, independently from

the distance between their most probable locations, and a generic spatial location, there

will be always a nonzero probability of finding them simultaneously in this location. Often

physicists speak of waves associated to the particles, and of nonzero overlap of the waves

associated to two different particles in every spatial location. What is important, is that

such overlap gives rise to a correlation (even if very small) between the behaviors of the

two particles. Such a correlation is, from all points of view, entirely equivalent to an

interaction (of quantum nature) between the two particles, independently from the fact

that there exist other interactions between them mediated by suitable force fields.

A third consequence of uncertainty is that, when we describe, in QM, assemblies of

identical particles (i.e. particles of the same type, as characterized by intrinsic features

such as their mass, electric charge, spin, etc.), the particles themselves are indistinguish-

able. This means that, by interchanging the spatial positions of two particles associated

to two different labels, the state of the system will remain unchanged (apart from a

multiplicative phase factor). On the contrary, in classical mechanics all particles are

distinguishable and the overall state of the system depends in a crucial way on the asso-

ciation between particle labels and their spatial locations. Such a circumstance lets us

characterize usual neural network models of cognition as classical, because within them

an assumption universally adopted is that the single microcognitive units deputed to de-

tect particular microfeatures are distinguishable. Namely, all people supposes that the
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outputs of these units can be known with unlimited precision; besides, the labeling of

the units themselves, once chosen, cannot be changed during neural network operation

without altering in a dramatic way the performance of the network itself.

The aforementioned consequences of uncertainty entail the occurrence of a typically

quantum phenomenon, named Bose-Einstein condensation (BEC). The latter occurs in

presence of suitable conditions (e.g. low temperatures) and consists in the fact that all

particles belonging to a given system fall simultaneously in the same quantum state. This

implies that their behaviors become all correlated, or synchronized, giving thus rise to

a macroscopic state, which appears as globally coherent. BEC can be considered as the

prototype of formation of macroscopic entities emerging, as collective effects, from the

laws ruling the behaviors of microscopic particles. For this reason, in their paper of 1967,

Ricciardi and Umezawa made appeal to BEC in order to explain how cognitive processes

(such as memorization, and recall) emerge from individual behaviors of brain neurons.

Let’s now turn to the other category of quantum models, the ones belonging to QFT.

The latter, contrarily to what happens in QM, assumes that the main physical entities

are fields (of force) and not particles. Such a standpoint has a long tradition in physics,

lasting to Faraday and Maxwell, and gave rise to the most powerful theoretical architec-

tures ever built in theoretical physics, such as Einstein’s General Relativity, and unified

gauge theories. Within this framework, the world is populated by fields (of force), and

the concept of particle has to be considered nothing but as an auxiliary concept to denote

space regions where a field has a particularly high intensity. The laws ruling physical phe-

nomena coincide with field equations, driving space-time evolution of fields. When such

equations are linear (as in the case of classical electromagnetic field) in field quantities,

then a nontrivial evolution needs the introduction of suitable external sources, whereas,

in the case of nonlinear field equations, a field can be self-generating, without the need

for the sources themselves.

Following such an approach, QFT attempts to treat fields as defined by uncertain

quantities. As fields, in principle, are not restricted to definite volumes, QFT deals typi-

cally with infinite volumes. In this way it becomes easy to introduce a sharp distinction

between macroscopic phenomena (the ones surviving when the volume tends to infinity)

and microscopic phenomena (which appear as fluctuations when the scale of observation

is large enough). Of course, the approach followed by QFT is very difficult to implement

in a concrete way, much more difficult than in the case of QM. For this reason, QFT can

still be considered an incomplete theory, of which only particular realizations have been

so far worked out, holding in particular domains, and at the expense of introduction of a

very complex mathematical machinery. Besides, some general conceptual problems raised

by this approach are still unsolved. This, after all is not so strange, as a full realization

of QFT would be equivalent to the building of a General Systems Theory, in the sense

of Von Bertalanffy (cfr. Von Bertalanffy, 1968), a sort of Theory of Whole, including the

observer himself formulating the theory.

Despite these difficulties (which prevent from a wide diffusion of ideas and methods of

QFT within domains different from physics of many-body systems), QFT, first proposed
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in 1926 by P.A.M. Dirac, obtained in the last fifty years remarkable successes in describing

and forecasting phenomena occurring within domain of particle physics and condensed

matter physics. Quantum electrodynamics, the explanation of laser effect, the unified

theory of weak and electromagnetic forces are between the most beautiful achievements

of QFT, marking the whole history of physical research in the twentieth century (see, to

this regard, Itzykson & Zuber, 1986; Umezawa, 1993). Here we will limit ourselves to

mention an important feature of QFT, which is central for our future discussion about

emergence: within QFT, differently from QM, there is the possibility of having different,

nonequivalent, representations of the same physical system (cfr. Haag, 1961; Hepp, 1972).

As each representation is associated to a particular class of macroscopic states of the

system (via quantum statistical mechanics) and this class, in turn, can be identified

with a particular thermodynamical phase of the system (for a proof of the correctness

of such an identification see Sewell, 1986), we are forced to conclude that only QFT

allows for the existence of different phases of the system itself. A further consequence

is that only within QFT we can deal with phase transitions, i.e. with global structural

changes of the system under study. Before closing our short discussion of QFT, we stress

that the existence of nonequivalent representations is strictly connected to the fact that,

if we interpret quantum fields as equivalent to sets of suitable particles lying in suitable

dynamical states, then QFT describes, even in its simplest implementations, situations in

which the total number of particles is no longer conserved. In other words, within QFT

(and only within it) are allowed processes of creation and of destruction of particles.

This gives to QFT a descriptive power enormously greater than the one of QM, where

the number of particles was kept fixed.

In the following paragraph we will make use of these introductory notions in order

to discuss the validity of a basic claim, according to which the modeling of emergent

phenomena and collective effects of the cooperative dynamics of neural units can be done

only by resorting to the methods and the framework of QFT. In other words, the only

possible emergence would be quantum emergence.

7. Emergence and Spontaneous Symmetry Breaking

To prove this claim, let us start by stressing that in an ideal model, by definition, we

can always introduce a function playing a role analogous to the one of energy in physical

systems, so that stable and metastable equilibrium states are directly associated to local

minima of such a function. The occurring of intrinsic emergence, then, can be identified

with a transition, triggered by the change of value of a given parameter, in which (at

least) a local energy minimum is splitted in a number (finite or infinite, but always greater

than one) of different local energy minima, all equivalent, i.e. characterized by the same

value of minimum energy. The intrinsic emergence is due to the fact that, if the system

was, before the transition, in the state corresponding to the old energy minimum, surely

the transition will provoke the settling of the system into one of the new energy minima,

but we cannot forecast which of them will be chosen, on the basis of the model we have,
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because all minima are equivalent one to another. Such a form of transition is usually

called spontaneous symmetry breaking (SSB), and appears as the only way, so far known,

to introduce intrinsic emergence in systems described by ideal models.

In order to deal with SSB by using a language similar to the one used in theoretical

physics, we will restrict ourselves to sub-models describing system’s behaviour not very

far from the local energy minimum undergoing a splitting during the transition producing

intrinsic emergence, in such a way that, within our sub-model, this energy minimum is an

absolute minimum, and can be identified with system’s ground state. Then, we must take

into account that in such a situation, both the form of model evolution equations and the

value of energy in the absolute minimum are invariant with respect to suitable symmetry

transformations (cfr. Olver, 1995). Now, by using a terminology originally coined by L.D.

Landau in his theory of second-order phase transitions, we will say that a SSB occurs

when ground states are not invariant with respect to the symmetry transformations which

leave unchanged both the form of evolution equations and energy values. As SSB takes

place when the value of a suitable parameter crosses a given critical value, we will have

that, before crossing (i.e. when there isn’t SSB), the system will be characterized by only

one ground state, and its behavior (of relaxation toward this state) will be predictable

in advance, whereas, after crossing (i.e. when SSB occurs), the system will fall in one

of its many possible ground states, without any possibility of forecasting, on the basis of

evolution equations, which one of them will occur.

As regards SSB, some remarks are in order. The first one is that, in most cases, the

multiplicity of ground states exists only if we go at the infinite volume limit. Namely

in finite systems such an effect is often hidden by the existence of suitable boundary

conditions. The most known case is that of the transition from paramagnetic to ferro-

magnetic state, in which the unique ground state of paramagnetic phase is splitted, in

the ferromagnetic phase, into two equivalent ground states: one with all spins parallel

to the inducing external field, and the other with all spins antiparallel. However, the

equivalence between these two ground states holds only in the infinite volume limit, and

disappears when the volume of magnets becomes finite (as it is the case in real world),

so that the ground state with all spins parallel becomes the favored one.

A second remark is that, both in classical and QFT-based descriptions of SSB, the

system will be anyway forced to choose one particular ground state. States corresponding

to linear combinations of different ground states are not allowed, even in QFT, because

it can be proved that any operator connecting two different ground states vanishes at the

infinite volume limit (cfr. Huang, 1987).

A third remark is that, if we describe SSB within the context of QFT, the occurring of

a SSB implies the appearance of collective excitations, which can be viewed as zero-mass

particles carrying long-range interactions. They are generally called Goldstone bosons

(cfr. Goldstone, Salam & Weinberg, 1962; for a more general approach see Umezawa,

1993). Such a circumstance endows systems, in which SSB takes place, with a sort of

generalized rigidity, in the sense that, acting on one side of the system with an external

perturbation, we can transmit such a perturbation to a very distant location essentially
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unaltered. The reason for the appearance of Goldstone bosons is that they act as order-

preserving messengers, preventing the system from a change of the particular ground

state chosen at the moment of SSB transition. Besides, they are a direct manifestation of

intrinsic emergence, as none of the forces acting between system’s elementary constituents

is able to produce generalized rigidity. We further remind that Goldstone bosons them-

selves can undergo the phenomenon of BEC, giving thus rise to new macroscopic objects

and to new emergent symmetries (cfr. Wadati, Matsumoto & Umezawa, 1978a, 1978b;

Matsumoto, Sodano & Umezawa, 1979; Umezawa, 1993).

Let’s now reformulate the fundamental question under the form: can classical, but

ideal, models of SSB, not based on framework of QFT, give rise to Goldstone bosons and

to generalized rigidity? In order to answer such a question, we will take into consideration

a classical system of individual particles described by laws of classical mechanics (which

lets us classify such a system as ideal, being derivable from a single variational principle),

whose global potential energy has a form such as to undergo a SSB in correspondence to a

suitable value of a given critical parameter. Let’s now focus on what happens when, after

the occurrence of a SSB transition, the system relaxes into one of its many, equivalent,

ground states. Such a relaxation process is described, from a microscopic point of view,

by a part of theoretical physics usually called Kinetics. Between the main results of

this latter we will quote the description of relaxation process when individual particles

obey classical mechanics, and, as a consequence, their statistical behavior is ruled by the

well known Maxwell-Boltzmann probability distribution. These results agree fairly well

with experimental data relative to behavior of particular types of ideal gases, and let

one derive the macroscopic form of the celebrated Second Principle of Thermodynamics,

holding for these gases (such a derivation is today known as H-theorem). The forecastings

based on classical Maxwell-Boltzmann probability distribution, however, fail to be valid

in presence of other condensed states of matter. In modern times, a careful study of

quantum probability distributions (both of Fermi-Dirac and of Bose-Einstein statistics)

showed how the classical Maxwell-Boltzmann distribution is nothing but a particular

approximation of quantum ones, holding in some special conditions, and helped us to

understand the limits of validity of classical statistical mechanics.

Notwithstanding the partial successes achieved by kinetics based on classical statis-

tical mechanics, for a long time many physicists lasted in a state of deep unsatisfaction,

as these successes were based on equations (such as the well known Boltzmann transport

equation) relying heavily on simplifying approximations introduced only on the basis of

phenomenological or bona fide arguments. In other words, classical kinetics was not

grounded on general principles. Such a situation changed after Second World War, when

N.Bogoliubov was able to show that all classical kinetics, including the form itself of

Maxwell-Boltzmann distribution, could be derived only on the basis of two general prin-

ciples:

pb.1) the validity of the laws of classical mechanics;

pb.2) a principle ruling the space-time behavior of an aggregate of classical particles,

named correlation weakening principle.



294 Electronic Journal of Theoretical Physics 6, No. 20 (2009) 269–306

Without entering into technical details (cfr. Rumer & Ryvkin, 1980; Akhiezer &

Péletminski, 1980; De Boer & Uhlenbeck, 1962) we will limit ourselves to say that corre-

lation weakening principle asserts that, during a relaxation process, all long-range corre-

lations between the individual motions of single particles tend to vanish when the volume

tends to infinity (such a vanishing takes place, of course, when time tends to infinity). We

can interpret such a principle as asserting the disappearance of Goldstone bosons (or of

classical long-range collective excitations) in the relaxation process of a system of classical

particles. As a consequence, classical systems cannot be endowed with generalized rigid-

ity. This, in turn, implies that, when volume tends to infinity, the choice of a particular

ground state, between the many possible after a SSB transition, can be destroyed even

by very small perturbations. Namely, order-preserving messengers in classical case are

absent. As a conclusion, SSB, even if possible in classical case, is unstable with respect

to (thermal) perturbations. Such a result was already found by many researchers (cfr.

Chafee, 1975; Fernandez, 1985; Nitzan & Ortoleva, 1980; Stein,1980) in the early days of

successes of theories of pattern formation based on dissipative structures.

Such a circumstance gives a sound basis for the claim advanced by the Nobel Prize P.W

Anderson and his coworkers (cfr. Anderson, 1981; Anderson & Stein, 1985), according

to which the only possible description of intrinsic emergence and of SSB is the one made

within QFT. A similar point of view was held also by H Umezawa (cfr. Umezawa, 1993).

As a conclusion of previous arguments we can assert that the only possible emergence is

a quantum emergence. Therefore, if cognition is a collective phenomenon, emergent from

the interaction of neural units, these latter must necessarily be interpreted as quanta of

a suitable quantum field. In other words, if cognition has to be emergent, it must be a

quantum phenomenon, as already proposed many years ago by Ricciardi and Umezawa

in their celebrated paper (Ricciardi & Umezawa, 1967).

8. Quantum Neural Networks

From the previous arguments it follows that every neural-network based model of emer-

gence of cognitive processing should be formulated in terms of a quantum neural network.

But, what is the meaning of such an expression? To this regard, we shall distinguish

between two different ways for building a quantum neural network model:

Qn.1) bottom-up ; in this case a quantum neural network is a set of interconnected

units, named quantum neurons; the time evolution of output activity of a typical quantum

neuron is driven by a quantum dynamical law, even if associated to neural-like features;

in order to introduce a quantum field, however, one is forced to resort to a suitable

continuum limit, performed on the quantum neural network, or to introduce a background

neural field (modelling, for instance, the space-time distribution of chemical substances

contained within extracellular liquid);

Qn.2) top-down ; in this case we start from the beginning from a quantum neural field

(for instance the field of neurotransmitters), and the quantum neural network is nothing

but a discrete approximation of the original field; what is difficult to obtain, however, is
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that such an approximation be automatically endowed with neural-like features.

The bottom-up approach, even if directly inspired by recent advances in quantum

computation and adopted by some authors (cfr. Samsonovich, 1994; Zak, 2000; Altaisky,

2001), meets a fundamental difficulty: the behavior of a typical neuron (described, for

example, by a sigmoidal activation law) is dissipative, as it doesn’t fulfill an energy con-

servation principle. Such a circumstance prevents from a direct application of traditional

quantization procedures, based on this principle, to dynamical laws ruling neural units.

This difficulty can be dealt with following two different approaches: either resorting to

new methods of quantization, designed for dissipative systems, which from the starting

come out of the usual Hamiltonian framework (cfr. Tarasov, 2001), or introducing the

so-called doubling mechanism (Celeghini, Rasetti & Vitiello, 1992). The latter starts

from the fact that a dissipative harmonic oscillator, that is endowed with a friction term

directly proportional to the velocity, can be always associated to a mirror harmonic os-

cillator, characterized by a negative friction, but exactly of the same magnitude as the

original dissipative oscillator. In other words, the mirror oscillator absorbs exactly the

energy dissipated by the first oscillator. What is interesting is that the whole system con-

stituted by the two oscillators, the original one and its mirror, can be described through

a suitable Hamiltonian, a circumstance due to the obvious fact that the total energy of

the system of the two oscillators is conserved. Thus, the introduction of mirror oscilla-

tors (that is, a doubling of the total number of oscillators) allows for the introduction of

traditional quantization procedures even in the case of dissipative systems.

Without entering in further details on this topic, we will limit ourselves to remark

that, when adopting a bottom-up approach, we are not necessarily forced to start from

the introduction of quantum neurons. Another possibility is to start from usual equa-

tions, describing the time evolution of activations of traditional neural-like units, and to

derive from them, through a suitable continuum limit, the evolution equations of suitable

classical neural fields, trying to write them under a form derivable from some Hamilto-

nian. Then, it is easy to apply the standard field quantization methods so as to obtain a

neural quantum field theory. In order to illustrate how such a procedure can be started,

we will make resort to a simple example, based on a toy model of a 1-dimensional neu-

ral network, in which each neural unit can receive inputs only from its two immediately

neighboring units. If we introduce, as customary, a discretized time scale t , t + Δt , t +

2 Δt , . . . , and a discretized spatial scale i , i + Δi , i + 2 Δi , . . . , the equation ruling

the time evolution of output activation of the unit located in the i-th spatial location will

have the form:

s(i, t + Δt) = F [ws(i, i−Δi)s(i−Δi, t) + wd(i, i + Δi)s(i + Δi, t)], (31)

where s(i, t) denotes the output activation of the i-th unit at time t , whereas ws(i

, i - Δi) is the value of connection weight associated to the interconnection line coming

to the i-th unit from its left-hand side neighboring unit located in the position i - Δi

and wd(i , i + Δi) is the analogous connection weight relative to the right-hand side unit

located in the position i + Δi. Besides, F will denote the traditional sigmoidal function
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defined by (6).

Let us now introduce the hypothesis of existence of a maximal neural signal propa-

gation speed, hereafter denoted by c (to stress the analogy with the light propagation

speed), which implies that time increments Δt and spatial increments Δi are connected

by the relationship:

Δi = cΔt. (32)

A further hypothesis is that, by taking the limit for Δi → 0, the two-point functions

ws(i , i - Δi) and wd(i , i + Δi) tend, respectively, to two functions ws(i) and wd(i) , to

be interpreted as a measure of the spontaneous ‘receptivity’ of the i-th unit with respect

to stimulations coming, respectively, from its left-hand and from its right-hand side.

By taking the limit for Δt → 0 in (31) and making use of the previous hypotheses,

we will obtain immediately the relationship:

s(i, t) = F{[ws(i) + wd(i)]s(i, t)}. (33)

We will now make use of the fact that, at the first order in Δi , we can write:

s(i−Δi, t) = s(i, t)− (∂s/∂i)Δi, s(i + Δi, t) = s(i, t) + (∂s/∂i)Δi

ws(i, i−Δi) = ws(i)− (∂ws/∂i)Δi, wd(i, i + Δi) = wd(i) + (∂wd/∂i)Δi. (34)

At this point, if we subtract from both members of (31) the quantity s(i, t) and we

divide both members by Δt , we will obtain, by taking the limit for Δt → 0 and by

taking into account the relationships (32), (33), (34), as well as the well known first-order

formula holding for the sigmoidal function:

F (ξ + Δξ) = F (ξ) + F (ξ)[1− F (ξ)]Δξ, (35)

that the output activation field will satisfy the partial differential equation:

∂s/∂t = cF [(ws + wd)s]1− F [(ws + wd)s][s∂(wd − ws)/∂x + (wd − ws)∂s/∂x]. (36)

By deriving (36) with respect to t and by taking into account that, owing to (32), we

have:

∂/∂t = c∂/∂x, (37)

we will finally obtain the following classical neural field equation:

∂2s/∂t2 = c2G(1−G)(1− 2G)(s∂P/∂x + P∂s/∂x)(s∂Q/∂x + Q∂s/∂x) +

+c2G(1−G)[s∂2Q/∂x2 + Q∂2s/∂x2 + 2(∂s/∂x)(∂Q/∂x)], (38)

where:
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G = F [(ws + wd)s], P = ws + wd, Q = wd − ws. (39)

The equation (38) gives rise to a number of interesting limiting cases. For instance,

if we assume that P = 0 , Q = const , we will obtain immediately that the neural field

equation will reduce to:

∂2s/∂t2 = c2(Q/4)∂2s/∂x2, (40)

that is, to standard wave equation. If, instead, we suppose that the argument of F

be so small as to have a value of G practically coincident with 1/2 , and we work in a

very high frequency approximation, so as to neglect the first order derivatives of Q with

respect to the second order ones, we can write the equation (38) under the form:

∂2s/∂t2 = (c2/4)(Q∂2s/∂x2 + s∂2Q/∂x2), (41)

coincident with a generalization of the usual Klein-Gordon equation. It is to be re-

marked that both neural field equations (40) and (41) can be quantized through standard

methods, so as to obtain a quantum neural field theory.

Before leaving such a topic, we underline that even a simple toy model, like the one

presented before, allows for the existence of spontaneous symmetry breaking phenomena

which, at the classical level, manifest themselves under the form of bifurcation points.

To this regard, if we suppose that the argument of F be so small as to write, in a first

approximation;

F (z) ∼= (1/2) + (1/4)z, (42)

then the homogeneous steady-state equilibrium solution of (38) will satisfy the equa-

tion:

−(1/4)P (∂P/∂x)(∂Q/∂x)s3 + (∂2Q/∂x2)s = 0. (43)

For generic choices of the form of the functions P and Q the equation (43) will have

one and only one solution corresponding to s = 0 (the ground state). However, if we

assume that these functions fulfill the (compatible and easily solvable) constraints:

(∂2Q/∂x2 = α, ∂Q/∂x = αx + β, P∂P/∂x = γ/(αx + β), (44)

where α , β and γ are suitable parameters, we will immediately see that (43) will

assume the form:

−(γ/4)s3 + αs = 0, (45)

which has three real solutions if α and γ have the same sign, whereas has only one

real solution, corresponding to s = 0 , in the opposite case. The critical situation in

which we have a bifurcation point corresponds, whence, to the case in which one of the
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two aforementioned parameters is vanishing (which one, depends on the choice of the

bifurcation parameter).

Another very interesting topic, highly relevant to the design of quantum neural net-

works according to the top-down approach, is connected to the following question: do

exist neural network models which, even if devoid of any quantum feature deliberately

introduced a priori , exhibit a behavior typical of quantum models? In other words, it

is possible to design neural-like systems which are not ideal models of emergence, in the

sense specified in the fifth paragraph, but behave like suitable approximate versions of

ideal models? Such a question arises from the well known fact that there exist models

of physical systems, based on traditional classical physics and, therefore, devoid of any

quantum property, which, however, exhibit a quantum-like behavior (see, for a review of

this topic, Carati & Galgani, 2001). The answer is, of course, yes, provided we introduce

suitable choices of interconnections, activation and learning laws, and, chiefly, we limit

our considerations to small-world situations, avoiding infinite volume limits. This is due

to the fact that the specification of a neural-like activity within a finite domain needs the

introduction of suitable constraints (such as boundary conditions, connection topology,

and so on) which, in a way or in another, could give rise to some form of nonlocal-

ity inside the modelled systems, manifesting itself through the occurrence of long-range

correlations.

Such a circumstance, of course, is to be expected if neural networks models are built

by starting directly from a quantum field model and following a reduction procedure of

this sort:

• look at the explicit form of quantum field equations

• undertake a suitable spatial discretization of these equations

• substitute the original time evolution laws of field operators with approximate neural-

like evolution laws

• replace the time evolution of neural-like operators with a time evolution of c-numbers,

representing neural-like quantities, mimicking in some way the quantum evolutionary

features

• introduce a finite spatial domain

• discretize the time scale.

A still unanswered question is whether any other neural network model, exhibiting quan-

tum features, but not built in advance according the previous procedure, could or not be

always viewed as deriving from a suitable quantum-field-theoretic ancestor model.

We will remark here that quantum neural networks don’t coincide with quantum

computers. These latter are devices whose operation is based on standard quantum-

mechanical laws and, as such, have nothing to do with quantum field theory. For instance,

they cannot allow for phase transitions. However, when a quantum-field-theoretical model

has been discretized and constrained within a finite domain in a neural-like fashion,

according to the procedure previously described, it could happen that its operation can

mimic the operation of a suitable quantum computer. Thus, quantum computers appear

as special cases of approximate forms of quantum neural networks. Within these latter,
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however, we could observe even behaviors impossible for a quantum computer, such as

self-assembly, structure change, variations in the number of components, self-repair, and

like.

As we have seen, the study of quantum neural networks is a fascinating and difficult

topic, which, however, cannot be explored within the short space of a single paper. We

will limit ourselves to underline, from one hand, the need for this extension of traditional

neural network models and, on the other hand, its feasibility.

Conclusions

The main conclusions of this paper, based on the arguments presented in the previous

paragraphs, can be thus synthetized:

• neural networks are universal approximators of whatever kind of system; thus, every

complex system can, in principle, be modelled through a suitable neural network;

• some traditional neural network models could be identified with not-ideal models

of emergence and, as such, we cannot control the occurrence of this emergence nor

know in advance whether it could or not disappear with increasing network size,

evolution time, and so on;

• the understanding of complex systems behavior requires a firmly grounded theory

of emergence;

• the only possible ideal models of emergence so far known can be formulated within

the framework of quantum field theory;

• as a consequence, any ideal model of emergence in a complex system, allowing for a

quantitative analysis, should coincide with a quantum neural network;

• the actual mathematical formulation of quantum field theory, however, precludes

its direct application to neural network models, as they have been designed so far;

in order to build quantum neural network models we still need to resort to ap-

proximations which, however, in many cases could be incompatible with modelling

constraints;

• a suitable generalization, or reformulation, of quantum field theory is in order, if we

want to extend its applicability to domains beyond the realm of atomic and particle

physics;

• the actual tools of theoretical physics are the only possible starting point for a theory

of emergence; they, however, should be suitably generalized in order to concretely

produce such a theory.

These conclusions pose a formidable challenge for the future: the extraction, from the

actual machinery of quantum theories, of the deep logical principles underlying them,

in order to allow for a comparison with the logic underlying classical physics and for

mathematical formulations totally independent from the particular features associated to

the context of point particles. To face this challenge, we shall need a deep rearrangement

of our cognitive schemata, which appears as the only possible way for a shift from the

study of unorganized complexity to the one of organizations, be they biological, cognitive,
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or socio-economical. We feel that only the latter framework will leave us some hope of

managing in a successful way the formidable problems posed by the actual world.
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1. Introduction

Quantum entanglement is a phenomenon in which the quantum states of two or more

objects have to be described with reference to each other, even though the individual ob-

jects may be spatially separated. This leads to correlations between observable physical

properties of the systems. As a result, measurements performed on one system seem to

be instantaneously influencing other systems entangled with it. Different views of what

is actually occurring in the process of quantum entanglement give rise to different inter-

pretations of quantum mechanics. In this paper we will demonstrate that entanglement

is not a prerogative of quantum systems: it occurs in other non-classical systems such

as quantum-classical hybrids [1], and that will shed light on the concept of entanglement

as a special type of global constraint imposed upon a broad class of dynamical systems.

In order to do that, we will turn to quantum mechanics. Representing the Schrödinger

∗ Michail.Zak@jpl.nasa.gov
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equation in the Madelung form, we observe the feedback from the Louville equation

to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the

same topology, we will replace the quantum potential by other type of feedbacks [2] and

investigate the property of these hybrid systems.

2. Destabilizing Effect of Liouville Feedback

We will start with derivation of an auxiliary result that illuminates departure from Newto-

nian dynamics. For mathematical clarity, we will consider here a one-dimensional motion

of a unit mass under action of a force f depending upon the dimensionless velocity v and

time t

v̇ = f(v, t), (1)

If initial conditions are not deterministic, and their probability density is given in the

form

ρ0 = ρ0(V ), where ρ ≥ 0, and

∞∫
−∞

ρdV = 1 (2)

while ρ is a single- valued function, then the evolution of this density is expressed by the

corresponding Liouville equation

∂ρ

∂t
+

∂

∂v
(ρf) = 0 (3)

The solution of this equation subject to initial conditions and normalization constraints

(2) determines probability density as a function of V and t : ρ = ρ(V, t).

In order to deal with the constraint (2), let us integrate Eq. (3) over the whole space

assuming that ρ→ 0 at |V | → ∞ and |f | <∞ . Then

∂

∂t

∞∫
−∞

ρdV = 0,

∞∫
−∞

ρdV = const, (4)

Hence, the constraint (3) is satisfied for t > 0 if it is satisfied for t = 0.

Let us now specify the force f as a feedback from the Liouville equation

f(v, t) = ϕ[ρ(v, t)] (5)

and analyze the motion after substituting the force (5) into Eq.(1)

v̇ = ϕ[ρ(v, t)], (6)

This is a fundamental step in our approach. Although the theory of ODE does not impose

any restrictions upon the force as a function of space coordinates, the Newtonian physics

does: equations of motion are never coupled with the corresponding Liouville equation.

Moreover, it can be shown that such a coupling leads to non-Newtonian properties of the
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underlying model. Indeed, substituting the force f from Eq. (5) into Eq. (4), one arrives

at the nonlinear equation for evolution of the probability density

∂ρ

∂t
+

∂

∂V
{ρϕ[ρ(V, t)]} = 0 (7)

Let us now demonstrate the destabilizing effect of the feedback (5). For that purpose, it

should be noted that the derivative ∂ρ/∂v must change its sign, at least once, within the

interval −∞ < v <∞, in order to satisfy the normalization constraint (2).

But since

Sign
∂v̇

∂v
= Sign

dϕ

dρ
Sign

∂ρ

∂v
(8)

there will be regions of v where the motion is unstable, and this instability generates

randomness with the probability distribution guided by the Liouville equation (8). It

should be noticed that the condition (9) may lead to exponential or polynomial growth

of v (in the last case the motion is called neutrally stable, however, as will be shown

below, it causes the emergence of randomness as well if prior to the polynomial growth,

the Lipchitz condition is violated).

3. Emergence of Randomness

In order to illustrate mathematical aspects of the concepts of Liouville feedback, as well

as associated with it instability and randomness let us take the feedback (6) in the form

f = −σ2 ∂

∂v
ln ρ (9)

to obtain the following equation of motion

v̇ = −σ2 ∂

∂v
ln ρ, (10)

This equation should be complemented by the corresponding Liouville equation (in this

particular case, the Liouville equation takes the form of the Fokker-Planck equation)

∂ρ

∂t
= σ2 ∂2ρ

∂V 2
(11)

Here v stands for a particle velocity, and σ2 is the constant diffusion coefficient.

The solution of Eq. (11) subject to the sharp initial condition is

ρ =
1

2σ
√

πt
exp(− V 2

4σ2t
) (12)

Substituting this solution into Eq. (10) at V = v one arrives at the differential equation

with respect to v(t)

v̇ =
v

2t
(13)

and therefore,
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v = C
√

t (14)

where C is an arbitrary constant. Since v = 0 at t = 0 for any value of C, the solution (14)

is consistent with the sharp initial condition for the solution (12) of the corresponding

Liouvile equation (11). The solution (14) describes the simplest irreversible motion: it is

characterized by the “beginning of time” where all the trajectories intersect (that results

from the violation of Lipchitz condition at t = 0, Fig.1), while the backward motion

obtained by replacement of t with (−t) leads to imaginary values of velocities. One can

notice that the probability density (13) possesses the same properties.

For a fixed C, the solution (14) is unstable since

dv̇

dv
=

1

2t
> 0 (15)

and therefore, an initial error always grows generating randomness. Initially, at t = 0,

this growth is of infinite rate since the Lipchitz condition at this point is violated

dv̇

dv
→∞ at t→ 0 (16)

This type of instability has been introduced and analyzed in [3].

Fig. 1 Stochastic process and probability density

Considering first Eq. (14) at fixed C as a sample of the underlying stochastic process

(12), and then varying C(ω) (where ω is a variable running over different samples of the

stochastic process, and ω ⊆ V ) , one arrives at the whole ensemble characterizing that

process, (see Fig. 1). One can verify that, as follows from Eq. (12), [4], the expectation

and the variance of this process are, respectively

MV = 0, DV = 2σ2t (17)

The same results follow from the ensemble (14) at −∞ ≤ C(ω) ≤ ∞. Indeed, the first

equality in (17) results from symmetry of the ensemble with respect to v = 0; the second

one follows from the fact that

DV ∝ v2 ∝ t (18)
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It is interesting to notice that the stochastic process (14) is an alternative to the following

Langevin equation, [4]

v̇ = Γ(t), MΓ = 0, DΓ = σ (19)

that corresponds to the same Fokker-Planck equation (11). Here Γ(t)is the Langevin

(random) force with zero mean and constant variance σ.

The results described in this sub-section can be generalized to n-dimensional case, [5].

4. Emergence of Global Constraint

In order to introduce and illuminate a fundamentally new non-Newtonian phenomenon

similar to quantum entanglement, let us assume that the function ϕ(ρ) in Eq. (5) is

invertible, i.e. ρ = ϕ−1(f). Then as follows from Eq. (7) with reference to the normal-

ization constraint (2)
∞∫

−∞

ϕ−1[v̇(ω, t)]dω = 1 (20)

Other non-Newtonian properties of solution to Eq. (7) such as shock waves in probability

space have been studied in [2] and [5]. Similar shock wave effects have been investigated

in [6].

Thus, the motions of the particles emerged from instability of Eq. (6) must satisfy

the global kinematical constraint (20).

It should be emphasized that the concept of a global constraint is one of the main

attribute of Newtonian mechanics. It includes such idealizations as a rigid body, an

incompressible fluid, an inextensible string and a membrane, a non-slip rolling of a rigid

ball over a rigid body, etc. All of those idealizations introduce geometrical or kinematical

restrictions to positions or velocities of particles and provides “instantaneous” speed of

propagation of disturbances. However, the global constraint

∞∫
−∞

ρdV = 1 (21)

is fundamentally different from those listed above for two reasons. Firstly, this constraint

is not an idealization, and therefore, it cannot be removed by taking into account more

subtle properties of matter such as elasticity, compressibility, etc. Secondly, it imposes

restrictions not upon positions or velocities of particles, but upon the probabilities of their

positions or velocities, and that is where the non-locality comes from.

Continuing this brief review of global constraints, let us discuss the role of the reac-

tions to these constraints, and in particular, let us find the analog of reactions of global

constraints in quantum mechanics. One should recall that in an incompressible fluid,

the reaction to the global constraint ∇ · v ≥ 0 (expressing non-negative divergence of

the velocity v) is a non-negative pressure p ≥ 0; in inextensible flexible (one- or two-

dimensional) bodies, the reaction of the global constraint gij ≤ g0
ij, i, j =1,2 (expressing
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that the components of the metric tensor cannot exceed their initial values) is a non-

negative stress tensor σij ≥ 0, i, j=1,2. Turning to quantum mechanics and considering

the uncertainty inequality

ΔxΔp ≥ �/2 (22)

in which Δx and Δp are the standard deviation of coordinate and impulse, respectively

as a global constraint, one arrives at the quantum potential
�2∇2√ρ

2m
√

ρ
as a “reaction” of

this constraint in the Madelung equations

∂ρ

∂t
+∇ • (

ρ

m
∇S) = 0 (23)

∂S

∂t
+ (∇S)2 + V −

�2∇2√ρ

2m
√

ρ
= 0 (24)

Here ρ and S are the components of the wave function ϕ =
√

ρeiS/h, and � is the Planck

constant divided by 2π. But since Eq. (23) is actually the Liouville equation, the quantum

potential represents a Liouville feedback similar to those introduced above via Eqs. (5)

and (9). Due to this topological similarity with quantum mechanics, the models that

belong to the same class as those represented by the system (7), (8) are expected to

display properties that are closer to quantum rather than to classical ones.

5. Emergence of Entanglement

Prior to introduction of the entanglement phenomenon, we will demonstrate additional

non-classical effects displayed by the solutions to Eqs. (6) and (7) when

ϕ(ρ) = ζρ, ζ = const. > 0

and therefore

v̇ = ζρ (25)

∂ρ

∂t
+ ζ

∂

∂V
(ρ2) = 0 (26)

The solution of Eq. (26) subject to the initial conditions ρ0(V ) and the normalization

constraint (2) is given in the following implicit form [7]

ρ = ρ0(λ), V = λ + ρ0(λ)t (27)

This solution subject to the initial conditions and the normalization constraint, describes

propagation of initial distribution of the density ρ0(V ) with the speed V that is propor-

tional to the values of this density, i.e. the higher values of ρ propagates faster than lower

ones. As a result, any compressive part of the wave, where the propagation velocity is a

decreasing function of V , ultimately “breaks” to give a triple-valued (but still continuous)

solution for ρ(V, t). Eventually, this process leads to the formation of strong discontinu-

ities that are related to propagating jumps of the probability density. In the theory of

nonlinear waves, this phenomenon is known as the formation of a shock wave. Thus,
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as follows from the solution (27), a single-valued continuous probability density spon-

taneously transforms into a triple-valued, and then, into discontinuous distribution. In

aerodynamical application of Eq. (26), when ρ stands for the gas density, these phenom-

ena are eliminated through the model correction: at the small neighborhood of shocks,

the gas viscosity ν cannot be ignored, and the model must include the term describing

dissipation of mechanical energy. The corrected model is represented by the Burgers’

equation
∂ρ

∂t
+

∂

∂V
(ρ2) = ν

∂2ρ

∂V 2
(28)

As shown in [7], this equation has continuous single-valued solution (no matter how small

is the viscosityν), and that provides a perfect explanation of abnormal behavior of the

solution to Eq. (26). Similar correction can be applied to the case when ρ stands for the

probability density if one includes Langevin forces Γ(t) into Eq. (25)

v̇ = ρ +
√

νΓ(t), < Γ(t) >= 0, < Γ(t)Γ(t′) >= 2δ(t− t′) (29)

Then the corresponding Fokker-Planck equation takes the form (28). It is reasonable

to assume that small random forces of strength
√

ν << 1 are always present, and that

protects the mathematical model (25), (26) from singularities and multi-valuedness in

the same way as it does in the case of aerodynamics.

It is interesting to notice that Eq. (28) can be obtained from Eq. (25) in which

random force is replaced by additional Liouville feedback

v̇ = ζρ− ν
∂

∂V
ln ρ, ζ > 0, ν > 0, (30)

An interesting non-classical property of a solution of this equation is decrease of entropy.

Indeed,

∂H
∂t

= − ∂
∂t

∞∫
−∞

ρ ln ρdV = −
∞∫
−∞

1
ζ
ρ̇(ln ρ + 1)dV =

∞∫
−∞

1
ζ

∂
∂V

(ρ2) ln(ρ + 1)dV

= 1
ζ
[
∞
|
−∞

ρ2(ln ρ + 1)−
∞∫
−∞

ρdV ] = −1
ζ

< 0
(31)

Obviously, presence of small diffusion, when ν << 1, does not change the inequality (31)

during certain period of time. (However, eventually, for large times, diffusion takes over,

and the inequality (31) is reversed). It is easily verifiable that the solution to Eq. (28)

satisfies the constraint (2) if the corresponding initial condition does, [7].

Let us concentrate now on the solution of the system (30) and (28) remembering that

it is a particular case of the system (6), (7)

v̇ = ζρ− ν
∂

∂V
ln ρ, ζ > 0, [ζ ] =

1

sec
, [ν] =

1

sec
, (32)

∂ρ

∂t
+ ζ

∂

∂V
(ρ2) = ν

∂2ρ

∂V 2
, (33)



314 Electronic Journal of Theoretical Physics 6, No. 20 (2009) 307–320

subject to a single-hump initial condition

ρ0(V ) = Aδ(V ) at t = 0, A = const. (34)

where A is the initial area of the hump, and

v(t = 0) = v0 (35)

The variable v in Eq. (32) is a dimensionless velocity v → v/v0, and the “Reynolds”

number

R = ζ
A

2ν
(36)

We will be interested in the solution of the system (32), (33) for the case of large Reynolds

number

R→∞, and ζ >> ν (37)

In this case, Eq. ( 32) can be simplified by omitting the “viscose” term

v̇ = ζρ, ζ > 0 (38)

However, omitting the last term in Eq. (33) would lead to qualitative changes outlined

above, and in particular, it would prevent us to start with the sharp initial conditions

(34).

We will start with the solution to Eq. (33). It is different from the standard Burger’s

equation only by a physical interpretation of the variable ρ that is now a probability

density (instead of density of a gas), but as shown in [7], the constraint (2) is satisfied

automatically if it is satisfied for the initial condition (34).

Thus, the solution to Eq.(33) subject to the conditions (2), (34) and (37) reads

ρ =
V

ζt
in 0 < V <

√
2Aζt and ρ = 0 outside (39)

Fig. 2 The triangular shock wave of probability density and samples of associated stochastic
process.

The solution has a shock of density

[ρ] =

√
2A

ζt
at V =

√
2Aζt (40)
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Substituting the solution (39) into equation (38) one obtains

v̇ =
v

t
in 0 < v <

√
2Aζt (41)

and

v̇ = 0 in v >
√

2Aζt (42)

whence

v = Ct in 0 < v <
√

2Aζt (43)

v = C in v >
√

2Aζt (44)

We will be interested here only in the region of Eqs. (41) and (43). Here C is an arbitrary

constant. Since v = 0 at t = 0 for any value of C, the solution (43) is consistent with the

sharp initial condition (34). For a fixed C, the solution (43) is unstable since

dv̇

dv
=

1

2t
> 0 (45)

and therefore, an initial error always grows generating randomness whose probability is

controlled by Eq.(33). Initially, at t = 0, this growth is of infinite rate since the Lipschitz

condition at this point is violated

dv̇

dv
→∞ at t→ 0 (46)

Considering first Eq. (41) at fixed C as a sample of the underlying stochastic process

(39), and then varying C(ω) (where ω is a variable running over different samples of the

stochastic process, and ω ⊆ V ) , one arrives at the whole ensemble characterizing that

process, (see Fig. 2).

The same phenomenon has been observed in the solution to Eq. (13). However, here

the stochastic process converges to the attractor represented by the curve (40) on the

V − t plane where the shock of the probability density occurs (see the red line in Fig. 2).

The displacement x corresponding to the velocity v, strictly speaking, includes a diffusion

term. However, because of vanishing viscosity (see Eq. (37), this term can be ignored,

and therefore, samples with the same initial positions have the same velocities.

Let us turn to physical interpretation of the solution. In terms of Eq.(38), the curve

(40) is a superposition of different samples of the stochastic process that have the same

position and velocity at the same instance of time. However, the accelerations of the

superimposed samples, as well as the probability of their occurance, are different. If one

introduces a continuous variable μ to distinguish the accelerations (assuming that this

variable changes from zero to one, while μ ⊂ V ), than, as follows from Eq. (38) with

reference to Eq. (40)
1∫

0

v̇(μ)dμ = ζ [ρ] =

√
2Aζ

t
(47)
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This is a global kinematical constraint that bounds the accelerations of those samples of

the stochastic process that are superimposed at the same point of the V − t plane, (see

the red curve in Fig. 2).

In order to investigate the properties of the constrained samples (47), let us slightly

modify the original system (32), (33) as

v̇ = ζρ− ν
∂

∂V
ln ρ, ζ > 0, if t ≤ T, and ζ < 0 if t > T (48)

∂ρ

∂t
+ ζ

∂

∂V
(ρ2) = ν

∂2ρ

∂V 2
(49)

Now we will be interested in the case ζ <0. Starting from t > T , the triangular shock

wave (see Fig. 2) will move backwards as a wave of expansion, and the shock will start

dissipating. In order to avoid unnecessary mathematical details, we will concentrate

attention only on the area around the shock itself disregarding behavior of the rest area

of the triangle. Therefore we can drop viscose terms in both equations since formation

of new shock waves will start up-stream away from the old shock, (see the grey area in

Fig. 3). Hence, now we will deal with the system

v̇ = ζρζ < 0 (50)

∂ρ

∂t
+ ζ

∂

∂V
(ρ2) = 0 (51)

The solution to these equations is,

ρ =
√

2A
ζT

, and v =
√

2A
ζT

t forρ < V
ζt

,

ρ = V
ζt

, and v = C(ω)t for 0 < V
ζt

<
√

2A
ζt

ρ = 0, and v = 0 for V
ζt

< 0

(52)

The first and the last parts of the solution (52) describe the motion in front and

in rear of the dispersing shock, (see the grey and the yellow areas, respectively, in Fig.

3). The middle part of the solution (52) describes the process of shock dispersion (see

the red fan in Fig.3). The most important property of the motion in this area is the

preservation of the global constraint (47): although samples of the stochastic process that

occur inside of the fan are not superimposed any more, i.e. they have different locations

and different velocities, nevertheless their accelerations are still bounded by the same

constraint as those as they had during their superposition, and such a “memory” expresses

qualitative effect of entanglement similar to those in quantum mechanics. However, there

is a difference: in quantum mechanics, entanglement is referred to different particles, while

in the system introduced above it is referred to different samples of the same particle.

To illuminate this effect, assume that we observed some portion of entangled samples

of a stochastic process. Then, based upon the global constraint (47), we can predict
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Fig. 3 Dispersion of the shock, and associated entangled fan.

properties of the rest, never observed, samples of the same stochastic process. It could

be expected that extension of the model (48), (49) to multi-dimensional case

v̇i = ζiρ− ν
∑ ∂

∂Vi

ln ρ, (53)

∂ρ

∂t
+
∑

ζi
∂

∂Vi

(ρ2) = ν
∂2ρ

∂V 2
, i=1,2,. . . n (54)

would create entanglement of samples of different particles.

6. Discussion and Conclusion

The formal mathematical difference between quantum and classical mechanics is better

pronounced in the Madelung (rather than the Schrödinger) equation. Two factors con-

tribute to this difference: the scale of the system introduced through the Planck constant

and the topology of the Madelung equations (23), (24) that includes the feedback (in

the form of the quantum potential) from the Liouville equation to the Hamilton-Jacobi

equation. Ignoring the scale factor as well as the concrete form of the feedback, we con-

centrated upon preserving the topology while varying the types of the feedbacks. As a

result, we arrived at a new class of dynamical systems: quantum-classical hybrids. A

general approach to the choice of the feedback was introduced and discussed in [2]. More

specific feedbacks linked to the behavioral models of Livings were presented in [5] via

replacement of quantum potential with information potential. That replacement leads to
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the capability of the model to evolve from disorder to order (compare to Eq. (31). The

computational capabilities of the quantum-classical hybrids have been investigated in [1]

where a special feedback – computational potential- was selected

The most effective way of implementation of quantum-classical hybrid is by means

of analog devices such as VLSI chips used for neural net’s analog simulations, [10]. Of

special importance there is the square root circuit that was extended to the circuit for

terminal repeller by Cetin,B, [11].

Thus, the objective of this paper is to demonstrate another fundamental property of

quantum-classical hybrids: entanglement. So far this mysterious property that caused

many discussions on the highest level of scientific community was considered as a preroga-

tive of quantum mechanics. In this paper we demonstrate that a special form of Liouville

feedback, Fig. 4, provides quantitatively similar entanglement effects: different samples

of a stochastic process after being superimposed for a certain period of time attain a

“memory”: their accelerations satisfy a global kinematical constraint (47).

Fig. 4 Classical physics, Quantum physics, and quantum-classical hybrid.
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hyperfinite. Let ρ :M→ N be an ultraweakly continuous ∗-homomorphism and let δ :M→ N

be a ∗-ρ-derivation such that δ(I) commutes with ρ(I). We prove that there is an element U in
N with ‖U‖ ≤ ‖δ‖ such that δ(A) = Uρ(A)− ρ(A)U for all A ∈M.
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1. Introduction

The theory of algebras of operators on Hilbert spaces started around 1930 with papers of

von Neumann and Murray. The principal motivations of these authors were the theory of

unitary group representations and certain aspects of the quantum mechanical formalism.

The von Neumann algebras are significant for mathematical physics since the most fruitful

algebraic reformulation of quantum statistical mechanics and quantum field theory was in

terms of these algebras, cf. [1, 2]. The study of theory of derivations in operator algebras

is motivated by questions in quantum physics and statistical mechanics. One of important

questions in the theory of derivations is that “ When are all bounded derivations inner?”

Forty years ago, Kadison [8] and Sakai [16] independently proved that every derivation
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of a von Neumann algebra M into itself is inner, see also papers of [7, 9]. This was the

starting point for the study of the so-called bounded cohomology groups (see [14]). This

nice result can be restated as saying that the first cohomology group H1(M; M) (i.e. the

vector space of derivations modulo the inner derivations) vanishes.

Let A and B be two algebras, X be a B-bimodule and ρ : A→ B be a homomorphism.

A linear mapping δ : A → X is called a ρ-derivation if δ(ab) = δ(a)ρ(b) + ρ(a)δ(b) for

all a, b ∈ A. These maps have been extensively investigated in pure algebra. Recently,

they have been treated in the Banach algebra theory (see [3, 6, 10, 11, 18] and references

therein).

A wide range of examples are as follows:

i. Every ordinary derivation of an algebra A into an A-bimodule X is an ιA-derivation

(throughout the paper, ιA denotes the identity map on the algebra A);

ii. For a given homomorphism ρ on A and a fixed arbitrary element X in an A-

bimodule X, the linear mapping δ(A) = Xρ(A) − ρ(A)X is a ρ-derivation of A into X

which is said to be an inner ρ-derivation.

iii. Every point derivation δ : A→ C at the character θ on A is a θ-derivation.

A von Neumann algebra M is said to be hyperfinite if there exists an increasing net

of finite dimensional subalgebras {Mλ}λ∈Λ such that ∪λMλ is ultraweakly dense in M.

There is a known characterization of hyperfiniteness that says M is hyperfinte if and

only if Hn(M ; X) = 0 for all dual normal M-bimodule X; cf. [4]. Recall that by the

weak (operator) topology on B(H) we mean the topology generated by the semi-norms

T $→ |〈Tξ, η〉| (ξ, η ∈ H). We also use the terminology ultraweak (operator) topology for

the weak∗-topology on B(H) considered as the dual space of the nuclear operators on H.

We refer the reader to [17] for undefined phrases and notations.

Using some strategies of [15], we prove that every ρ-derivation is inner under certain

conditions in the setting of hyperfinite von Neumann algebras. In [12], we prove a similar

result for von Neumann algebras under some other conditions (see also [13]).

Throughout the paper, A and B denote unital C∗-algebras and M, N denote von

Neumann algebras acting on a Hilbert space H.

2. The Main Results

We now establish our first result for ρ-derivations on hyperfinite von Neumann algebras

when ρ is an ultraweakly continuous ∗-homomorphism. By a ∗-mapping we mean a map-

ping preserving ∗. We start with the following theorem.

Theorem 2.1. Let A and B be two unital C∗-algebras, ρ : A → B be a strongly

continuous and ultraweakly continuous ∗-homomorphism with the extension ρ̄ of the

ultraweak closure A of A into the ultraweak closure B of B, and δ : A → B be a

ρ-derivation. Then δ is ultraweakly continuous and can be extended to a ρ̄-derivation

δ̄ : A→ B in such a way that ‖δ̄‖ = ‖δ‖.
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Proof. Let A1 and A+
1 denote the closed unit balls of A and the positive cone A+,

respectively. Fix the vectors ξ, η ∈ H and let A ∈ A+ with the positive square root B.

We have

|〈δ(A)ξ, η〉| = |〈δ(B2)ξ, η〉|
= |〈δ(B)ρ(B)ξ, η〉|+ |〈ρ(B)δ(B)ξ, η〉|
= |〈δ(B)ρ(B)ξ, η〉|+ |〈δ(B)ξ, ρ(B)η〉|
≤ ‖δ‖ ‖B‖ ‖ρ(B)ξ‖ ‖η‖+ ‖δ‖ ‖B‖ ‖ξ‖ ‖ρ(B)η‖.

Hence

‖ρ(B)ξ‖2 = 〈ρ(B)ρ(B)ξ, ξ〉 = 〈ρ(A)ξ, ξ〉 = ‖ρ(A)ξ‖ ‖ξ‖

Thus

|〈δ(A)ξ, η〉| ≤ ‖δ‖ ‖A‖1/2
(
‖ξ‖1/2‖η‖ ‖ρ(A)ξ‖1/2

+‖η‖ ‖ξ‖1/2‖ρ(A)η‖1/2
)
.

Hence A $→ |〈δ(A)ξ, η〉| is continuous at 0 on A+
1 in the relative strong topology. Using

the standard reasoning as in the proof of Theorem 2.2.2 of [15] we deduce that δ is

ultraweakly continuous on A. Hence a limit argument let us extend δ and ρ on A to

ultraweakly continuous linear mappings δ and ρ, respectively. Since the multiplication is

separately ultraweakly continuous we conclude that δ is a ρ-derivation.�
The next statement is a known fact about finite dimensional C∗-algebras; cf. Lemma

2.4.1 of [15].

Lemma 2.2. Let M be a finite dimensional von Neumann algebra. Then there exists

a finite group G of unitary elements whose span is M.

We are ready to show that every ∗-ρ-derivation on a finite dimensional von Neumann

algebra is inner.

Proposition 2.3. Let M be a finite dimensional von Neumann algebra with the unit

I, N be a von Neumann algebra, ρ : M → N is a ∗-homomorphism, δ : M → N be a

∗-ρ-derivation and δ(I) commutes with ρ(I). Then there exists an element U in N with

‖U‖ ≤ ‖δ‖ such that δ(A) = Uρ(A)− ρ(A)U for each A ∈M.

Proof. First, we have

δ(A)ρ(I) = δ(AI)ρ(I)

= δ(A)ρ(I)ρ(I) + ρ(A)δ(I)ρ(I)

= δ(A)ρ(I) + ρ(A)ρ(I)δ(I)

= δ(A)ρ(I) + ρ(A)δ(I)

= δ(A),

for all A ∈M. In addition, δ(A) = δ(A∗)∗ = (δ(A∗)ρ(I))∗ = ρ(I)δ(A), for all A ∈M.
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Next, let G = {U1, · · · , Un} be a group of unitaries spanning M. Set

U = −1

n

n∑
i=1

ρ(U∗i )δ(Ui).

Since ∗-homomorphisms on C∗-algebras are norm decreasing we have ‖U‖ ≤ ‖δ‖ and

δ(UiUj) = δ(Ui)ρ(Uj) + ρ(Ui)δ(Uj).

Thus

ρ(Uj)(ρ(UiUj))
∗δ(UiUj) = ρ(U∗i )ρ(I)δ(UiUj)

= ρ(U∗i )δ(UiUj)

= ρ(U∗i )δ(Ui)ρ(Uj) + ρ(U∗i )ρ(Ui)δ(Uj)

= ρ(U∗i )δ(Ui)ρ(Uj) + δ(Uj).

Therefore

ρ(Uj)
n∑

i=1

(ρ(UiUj))
∗δ(UiUj) =

n∑
i=1

(
ρ(U∗i )δ(Ui)

)
ρ(Uj) + nδ(Uj).

Since {U1Uj , · · · , UnUj} = {U1, · · · , Un} we have

ρ(Uj)(−nU) = (−nU)ρ(Uj) + nδ(Uj).

This shows that δ(Uj) = Uρ(Uj) − ρ(Uj)U for all j = 1, · · · , n. Thus δ(A) = Uρ(A) −
ρ(A)U for all A ∈M.�

The above proposition enables us to address the problem whether ∗-ρ-derivations on

hyperfinite von Neumann algebras are inner.

Theorem 2.4. Let M be a hyperfinite von Neumann algebra with the unit I, N be

a von Neumann algebra, ρ : M→ N be an ultraweakly continuous ∗-homomorphism and

δ : M → N be a ∗-ρ-derivation such that δ(I) commutes with ρ(I). Then there is an

element U in N with ‖U‖ ≤ ‖δ‖ such that δ(A) = Uρ(A)− ρ(A)U for all A ∈M.

Proof. Suppose {Mλ}λ∈Λ is an increasing net of finite dimensional subalgebras of M

(containing I) such that ∪λMλ is ultraweakly dense in M. The ρ-derivation δ : M→ N

induces a family of ρ-derivations δλ : Mλ → N by restriction. By Proposition 2. there

are elements Uλ ∈ N, with ‖Uλ‖ ≤ ‖δ‖ such that

δλ(A) = Uλρ(A)− ρ(A)Uλ, A ∈Mλ

Since the ball in N of radius ‖δ‖ is ultraweakly compact {Uλ}λ∈Λ has a co-final ultraweakly

convergent subnet {Uγ}γ∈Γ with limit U ∈ N. Hence ‖U‖ ≤ ‖δ‖. If A ∈ ∪λMλ then

δ(A) = Uρ(A)− ρ(A)U . It follows from Theorem (2.1) that δ is ultraweakly continuous.

Therefore δ(A) = Uρ(A)− ρ(A)U for all A ∈M.�
Remark 2.5. For two arbitrary von Neumann algebras M and N, a positive linear

mapping ψ : M→ N is said to be normal if for every increasing filtering set F ⊆M+ with
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supremum T ∈M+, ψ(F) has supremum ψ(T ). Theorem 2 of page 59 of [5] implies that

each normal ∗-homomorphism ψ : M → N is ultraweakly and ultrastrongly continuous

and hence the restriction of ψ to bounded subsets of M is weakly and strongly continuous.

Corollary 2.6. Suppose that A ⊆ M ⊆ N are von Neumann algebras, where A is

hyperfinite, ρ : M→ N is a ultraweakly continuous ∗-homomorphism and δ : M→ N is

a ∗-ρ-derivation such that δ(I) commutes with ρ(I). Then there is an inner ∗-ρ-derivation

δ1 such that δ − δ1 annihilates A.

Proof. By Theorem 2., for the restriction of δ to A there is an element N ∈ N

such that δ(A) = Nρ(A) − ρ(A)N, A ∈ A. Defining δ1 : M → N by δ1(A) = Nρ(A) −
ρ(A)N, A ∈M, we conclude that δ − δ1 annihilates A.�
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Abstract: During last one and half decade an interesting relationship between chaos and
cryptography has been developed, according to which many properties of chaotic systems
such as: ergodicity, sensitivity to initial conditions/system parameters, mixing property,
deterministic dynamics and structural complexity can be considered analogous to the confusion,
diffusion with small change in plaintext/secret key, diffusion with a small change within one
block of the plaintext, deterministic pseudo randomness and algorithmic complexity properties
of traditional cryptosystems. As a result of this close relationship, several chaos based
cryptosystems have been put forward since 1990. In one of the stages of the development of
chaotic stream ciphers, the application of discrete chaotic dynamical systems in pseudo random
bit generation has been widely studied recently. In this communication, we propose a novel
pseudo random bit generator (PRBG) based on two chaotic standard maps running side-by-
side and starting from random independent initial conditions. The pseudo random bit sequence
is generated by comparing the outputs of both the chaotic standard maps. We also present
the detailed results of the statistical testing on generated bit sequences, done by using two
statistical test suites: the NIST suite and DIEHARD suite, which are developed independently
and considered the most stringent statistical test suites to detect the specific characteristics
expected of truly random sequences.
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1. Introduction

New rapid developments in the telecommunication technologies especially the Internet

and mobile networks have extended the domain of information transmission, which in turn
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present new challenges for protecting the information from unauthorized eavesdropping.

It has intensified the research activities in the field of cryptography to fulfill the strong

demand of new secure cryptographic techniques [1, 2].

Recently researchers from the nonlinear dynamics community have noticed an inter-

esting relationship between chaos and cryptography. According to that many properties of

chaotic systems such as: ergodicity, sensitivity to initial conditions/system parameters,

mixing property, deterministic dynamics and structural complexity can be considered

analogous to the confusion, diffusion with small change in plaintext/secret key, diffusion

with a small change within one block of the plaintext, deterministic pseudo randomness

and algorithmic complexity properties of traditional cryptosystems [3]. As a result of this

close relationship several chaos based cryptosystems have been put forward since 1990 [4].

These chaos based cryptosystems can be broadly classified into two categories: analog

and digital. Analog chaos based cryptosystems are based on the techniques of control [5,

6] and synchronization [5, 7, 8] of chaos. There are several ways through which analog

chaos based cryptosystems can be realized such as: chaotic masking [9], chaotic modula-

tion [10], chaotic switching [11], inverse system approach [12] etc. On the other hand in

digital chaos based cryptosystems, chaotic discrete dynamical systems are implemented

in finite computing precision. Again there are number of ways through which digital

chaos based cryptosystems be realized: block ciphers based on forward and/or reverse

iterations of chaotic maps [4, 13,14,15], block ciphers based on chaotic round functions

[16], stream ciphers implementing chaos based pseudo random bit generators (PRBG)

[17] etc.

The subject of the present manuscript is the generation of cryptographically secure

pseudo random bit sequences, which can be further used in the development of fool-proof

stream ciphers and its statistical testing. The very first, relatively unnoticed, idea of

designing a pseudo-random number generator by making use of chaotic first order non-

linear difference equation was proposed by Oishi and Inoue [18] in 1982 where they could

construct a uniform random number generator with an arbitrary Kolmogorov entropy.

After a long gap, in 1993 Lin and Chua [19] designed a pseudo random number generator

by using a second-order digital filter and realized it on digital hardware. After 1993, a

significant progress has been made in this direction. We refer the readers to our recent

contribution [20] for the detail review of the existing work on random bit generation using

chaotic systems.

In this paper, we propose a pseudo random bit generator (PRBG) based on two chaotic

standard maps. Most of the existing pseudo random bit generators [18, 19] are based

on a single chaotic system and there are known techniques in chaos theory to extract

information about the chaotic systems from its trajectory, which makes such chaos based

pseudo random bit generators insecure [21]. However the proposed pseudo random bit

generator is based on two chaotic systems running side-by-side, which of course increases

the complexity in the random bit generation and hence becomes difficult for an intruder

to extract information about the chaotic system. In the next section, we briefly introduce

the standard mapping, which is a basic building block of the proposed pseudo random



Electronic Journal of Theoretical Physics 6, No. 20 (2009) 327–344 329

bit generator and its properties, which make it a suitable choice for the generation of

random bit sequences.

2. The standard map

The origin of the well known and widely used standard map lies in the field of particle

physics. The problem examined by Fermi [22], as an analogue to a possible cosmic

ray acceleration mechanism in which charged particles are accelerated by collision with

moving magnetic field structures, is that of a ball bouncing between a fixed and an

oscillating wall. For every impact of the ball on the wall, the phase of the oscillation is

chosen at random, the ball will get accelerated. The question was now that, if the ball

would be also accelerated, when the wall oscillation is a periodic function of time. This

problem was investigated by Ulam [23] who found that the particle motion appeared to

be stochastic, but did not increase its energy. Other people [24-26] demonstrated that

in case of smooth forcing functions, the phase plane shows three distinct regions with

increasing ball velocity: (i) a low-velocity region where all fixed points of period -1 are

unstable and thus leading to stochastic motion, (ii) an intermediate velocity region in

which islands of stability around elliptic fixed points are embedded in a stochastic sea

and (iii) a high velocity region in which bands of stochastic motion are separated from

each other by regular orbits. As this problem of particle acceleration can be approximated

by the simple mapping, it became a well-suited case to study the parameter regions of

phase space and the corresponding KAM surfaces. The exact Ulam mapping for the

motion of the ball bouncing between a fixed and an oscillating wall, where the velocity

is defined by a saw tooth function, is given by a set of four exact difference equations.

Under the area-preserving condition and if we allow the wall to add momentum to the

ball according to its velocity (without a change in the position of the wall), this set of

four difference equation be converted into a set of two difference equations:

un+1 = |un + sin ψn| , (1)

ψn+1 = ψn +
2πM

un+1
. (2)

where unand ψn respectively, are directly related to the ball velocity and phase just before

the nth impact.

The standard mapping is obtained by the linearization of the above set of difference

equations in action space. The set of difference equations thus obtained are

Xn+1 = Xn + K sin Yn mod 2π, (3)

Yn+1 = Yn + Xn+1 mod 2π, (4)

where Xn is the new action parameter , which has explicit dependence on un, Yn is the

new angle obtained by shifting the phase ψn by π and K is stochasticity parameter. The

period-1 fixed point of the standard mapping can be easily obtained by requiring that
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the phase (mod2π) and the action are stationary i.e., X1 = 2πm (m ∈ Z) and Y1 = 0, π.

The fixed point Y = 0 is always stable whereas the fixed point Y = π is stable for K < 4

and changes from an elliptic fixed point to an hyperbolic fixed point with the increase in

K. For the detailed derivation of the standard mapping from the original Fermi problem

and its stability analysis, we refer the readers to [27].

In Figure 1, we have shown how the chaotic region in the phase space increases with

K. For K = 0.5 one can see the primary period-1 and period -2 orbits very clearly, only

local stochasticity near the separatrix occurs. For K = 1.0 the KAM curve between the

period-1 and period-2 islands has been destroyed and the chaos is global now, only the

islands of stability remain. As the value of K increases the size of the islands of stability

decreases. In a recent numerical experimentation [28], it has been shown that at very

Fig. 1 Phase space for the standard map for K = 0.5, 1.0, 1.5, 2.5, 6.0 and18.9.

large values of the stochasticity parameter, there exist areas of regular motion- in fact

there is a ‘creation and decay’ of the periodic orbits, which happens to repeat itself with

a period of 2π.

3. The proposed PRBG

A random bit generator (RBG) is a device or algorithm, which outputs a sequence of

statistically independent and unbiased binary digits. Such generator requires a naturally
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occurring source of randomness (non-deterministic). In most practical environments de-

signing a hardware device or software programme to exploit the natural source of ran-

domness and produce a bit sequence free from biases and correlation is a difficult task.

In such situations, the problem can be ameliorated by replacing a random bit generator

with a pseudo random bit generator (PRBG).

A pseudo random bit generator (PRBG) is a deterministic algorithm, which uses a

truly random binary sequence of length k as input called seed and produces a binary

sequence of length l >> k, called pseudo random sequence, which appears to be random.

The output of a PRBG is not truly random; in fact the number of possible output

sequences is at most a small fraction (2k
/
2l) of all possible binary sequences of length l.

The basic intent is to take a small truly random sequence of length k and expand it to

a sequence of much larger length l in such a way that an adversary can not efficiently

distinguish between output sequence of PRBG and truly random sequence of length l[2].

In this paper, we are proposing a PRBG, which is based on two standard maps,

starting from random independent initial conditions (X1,0, Y1,0, X2,0, Y2,0 ∈ [0, 2π])

X1,n+1 = X1,n + K sin Y1,n mod 2π, (5)

Y1,n+1 = Y1,n + X1,n+1 mod 2π, (6)

X2,n+1 = X2,n + K sin Y2,n mod 2π, (7)

Y2,n+1 = Y2,n + X2,n+1 mod 2π, (8)

The bit sequence is generated by comparing the outputs of both the standard maps in

the following way:

h(X2,n+1, Y1,n+1) =

⎧⎪⎨⎪⎩ 1 if X2,n+1 > Y1,n+1

0 if X2,n+1 ≤ Y1,n+1

, (9)

The set of initial conditions (X1,0, Y1,0, X2,0, Y2,0 ∈ [0, 2π]) serves as the seed for the

PRBG, if we supply the exactly same seed to the PRBG, it will produce the same bit

sequence due to the above deterministic procedure. The schematic block diagram of the

proposed PRBG is shown in Figure 2.

Fig. 2 Schematic block diagram of the proposed pseudo random bit generator (PRBG)
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In the next section, we discuss the results of the statistical testing of the proposed

PRBG using the NIST (National Institute of Standards and Technology, Gaithersberg,

MD, USA) tests suite and DIEHARD tests suite, which are considered the most stringent

statistical tests suites to test randomness.

4. Statistical Testing

In order to gain the confidence that newly developed pseudo random bit generators are

cryptographically secure, they should be subjected to a variety of statistical tests designed

to detect the specific characteristics expected of truly random sequences. There are

several options available for analyzing the randomness of the newly developed pseudo

random bit generators. The four most popular options are: NIST suite of statistical tests

[29], the DIEHARD suite of statistical tests [30], The Crypt-XS suite of statistical tests

and the Donald Knuth’s statistical tests set. There are different number of statistical tests

in each of the above mentioned test suites to detect distinct types of non-randomness in

the binary sequences. Various efforts based on the principal component analysis show

that not all the above mentioned suites are needed to implement at a time as there are

redundancy in the statistical tests (i.e., all the tests are not independent).

In this communication, we use the NIST suite and DIEHARD suite to test the ran-

domness of the bit sequences generated by the proposed pseudo random bit generator.

In the following paragraph, we discuss the results of our analysis of the proposed pseudo

random bit generator with the NIST and DIEHARD tests suites.

Testing strategy

The NIST tests and DIEHARD tests, like many statistical tests, are based on hy-

pothesis testing. A hypothesis test is a procedure for determining if an assertion about a

characteristic of a population is reasonable. In the present case, the test involves deter-

mining whether or not a specific sequence of zeroes and ones is random (it is called null

hypothesis H0).

For each test, a relevant randomness statistic be chosen and used to determine the

acceptance or rejection of the null hypothesis. Under an assumption of randomness,

such a statistic has a distribution of possible values. A theoretical reference distribution

of this statistic under the null hypothesis is determined by mathematical methods and

corresponding probability value (P-value) is computed, which summarizes the strength of

the evidence against the null hypothesis. For each test, the P-value is the probability that

a perfect random number generator would have produced a sequence less random than

the sequence that was tested, given the kind of non-randomness assessed by the test. If a

P-value for a test is determined to be equal to 1, then the sequence appears to have perfect

randomness. A P-value equal to zero indicates that the sequence appears to be completely

non-random. A significance level (α) be chosen for the tests and if P−value ≥ α, then the

null hypothesis is accepted i.e., the sequence appears to be random. IfP−value < α, then

the null hypothesis is rejected; i.e., the sequence appears to be non-random. Typically,

the significance level (α) is chosen in the interval [0.001, 0.01]. The α = 0.01 indicates
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that one would expect 1 sequence out of 100 sequences to be rejected. A P−value ≥ 0.01

would mean that the sequence would be considered to be random with a confidence of

99%.

4.1 The NIST Suite:

The NIST tests suite is a statistical package comprising of 16 tests that are developed

to test the randomness of (arbitrary long) binary sequences produced by either hardware

or software based cryptographic random or pseudo random bit generators. These tests

focus on variety of different types of non-randomness that could exist in a binary sequence.

Broadly, we may classify these sixteen tests into two categories: (i) Non-parameterized

tests: Frequency (monobit) test, Runs test, Test for longest run of ones in a block,

Lempel-Ziv compression test, Binary matrix rank test, Cumulative sums test, Discrete

Fourier transform (spectral) test, Random excursions test and Random excursions variant

test and (ii) Parameterized tests: Frequency test within a block, Approximate entropy

test, Linear complexity test, Maurer’s universal statistical test, Serial test, Overlapping

template matching test and Non-overlapping template matching test. For the detailed

description of all 16 tests of NIST suite, we refer the readers to the NIST document [29].

For the numerical experimentations on the proposed pseudo random bit generator, we

have generated 100 (sample size m = 100) different binary sequences (each sequence has

been generated from a randomly chosen seed (X1,0, Y1,0, X2,0, Y2,0 ∈ [0, 2π] , K1=150.72,

K 2 = 210.37) each of length 106 bits and computed the P-value corresponding to each

sequence for all the 16 tests of NIST Suite (in all we have computed total 50×100 = 5000

P-values). All the computations have been performed in the double precision floating

point representation. We refer the readers to Rukhin et al [29] for the detailed math-

ematical procedure for calculating the P-value for each individual test of NIST suite.

For the analysis of P-values obtained from various statistical tests, we have fixed the

significance level at α = 0.01. In Tables 1 and 2 respectively, we have summarized the

results obtained after implementing non-parameterized and parameterized tests of NIST

suite on the binary sequences produced by the proposed pseudo random bit generator.

Interpretation of results

(i) Uniform distribution of P-values: For each test, the distribution of P-values for

a large number of binary sequences (m = 100) has been examined. The uniformity of

the P-values has been examined quantitatively via an application of χ2 test and the

determination of a P-value corresponding to the Goodness-of-Fit distributional test on

the P-values obtained for each statistical test (i.e., a P-value of the P-values, which is

denoted by P − valueT ). The computation is as follows:

χ2 =

10∑
i=1

(
fi − m

10

)2

m
10

, (10)

where fi is the number of P-values in the sub-interval i and m is the size of the sample,

which is m = 100 for the present analysis. The P-value of the P-values (i.e., P − valueT )
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is obtained from the χ2 by using

P − valueT = igamc

(
9

2
,

χ2

2

)
, (11)

where igamc( ) is the incomplete Gamma function.

If P − valueT ≥ 0.0001 then the P-values are considered to be uniformly distributed.

The computed P − valueT corresponding to each statistical test has been given in Tables

1 and 2. In Figures 3(a) and (b) respectively, we have graphically depicted the computed

P − valueT for each non-parameterized and parameterized test along with the threshold

value (0.0001).

(ii) Proportions of the sequences passing the tests: We have calculated the proportion

of the sequences passing a particular statistical test and compared it with the range of

acceptable proportion. The range of acceptable proportion is determined by using the

confidence interval given by

p̂± 3

√
p̂(1− p̂)

m
, (12)

where m is the sample size and p̂ = 1 − α, which are m = 100 and p̂ = 1− 0.01 = 0.99

for the present analysis. So the range of acceptable proportion is [1.01985, 0.96015].

The quantitative results of proportions are given the Tables 1 and 2 respectively for

various non-parameterized and parameterized statistical tests of NIST suite. In Figures

4(a) and (b) respectively, we have graphically depicted the computed proportions for

each non-parameterized and parameterized test along with the confidence interval i.e.,

[1.01985, 0.96015].

It is clear that the computed proportion for each test lies inside the confidence interval;

hence the tested binary sequences generated by the proposed PRBG are random with

respect to all the 16 tests of NIST suite.

4.2 The DIEHARD Suite

The DIEHARD suite is a battery of statistical tests for measuring the quality of a set of

random numbers. They are developed by George Marsaglia and first published in 1995.

The tests are: Birthday spacings, Overlapping permutations, Ranks of matrices, Monkey

tests, Count the 1s, Parking lot test, Minimum distance test, Random spheres test, The

squeeze test, Overlapping sums test, Runs test, and The craps test. For the detailed

description of all tests in the DIEHARD suite, we refer the readers to [30].

The tests available in the DIEHARD suite return a p-values, which should be uniform

on [0,1] if the input file contains truly independent random bits. These p-values are

obtained by p = F (X), where F is the assumed distribution of the sample random

variable X, often normal. But the assumed F is just an asymptotic approximation, for

which the fit will be worst in the tails. Thus we should not be surprised with occasional

p-values near 0 or 1, such as .0011 or .9981. When a bit stream really FAILS BIG, we will

get p’s of 0 or 1 to six or more places. By all means, do not, as a statistician might, think
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Fig. 3 P − valueT (i.e, P-value of the P-values) for (a) non-parameterized tests and (b) param-
eterized tests of NIST suite. The horizontal line represents the threshold value of P − valueT .

that a p < .025 or p> .975 means that the RNG has ”failed the test at the significance

level α=.05”. Such p’s happen among the hundreds that DIEHARD produces, even with

good RNG’s [30].

For the numerical experimentations on the proposed pseudo random bit generator,

we have generated an input file for the DIEHARD testing consists of 30,00,000 32-bit

integers produced using the proposed random bit generator with randomly chosen seed

(X1,0, Y1,0, X2,0, Y2,0 ∈ [0, 2π] , K1=150.72, K 2 = 210.37) (an ASCII file in hex form,

8 hex ’digits’ per integer, 10 integers per line with no intervening spaces). Then the

P-values corresponding to the various statistical tests of DIEHARD suite are computed

(in all it computes 234 P-values). The details of the computed P-values are given in

Table 3.

It is clear from the results of DIEHARD testing given in Table 3 that the random bit

sequences produced using the proposed pseudo random bit generator have the character-

istics expected of truly random sequences.
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Fig. 4 Proportions of the sequences passing the tests for (a) non-parameterized and (b) param-
eterized tests of NIST suite. The region between two horizontal dashed lines is the acceptable
range of proportion.

Conclusion

We have proposed a design of a pseudo random bit generator (PRBG) based on two

chaotic standard maps iterated independently starting from independent initial condi-

tions. The pseudo random bit sequence is obtained by comparing the outputs of both the

chaotic maps. We have also tested rigorously the generated sequences using the NIST

suite and DIEHARD suite, which are considered the most stringent statistical tests suites

to detect the specific characteristics expected of truly random sequences. The results of

statistical testing are encouraging and show that the proposed PRBG has perfect cryp-

tographic properties and hence can be used in the design of new stream ciphers.
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Table 1: Non-parameterized tests results

• Number of binary sequences tested (m): 100

• Length of each binary sequence: 1,000,000 bits

• Significance level (α) = 0.01

• The range of acceptable proportion is 0.99±0.02985

• Null hypothesis (H0): The binary sequence is random

• If P − value ≥ α (0.01)then the null hypothesis (H0) is accepted.

• If P − value < α (0.01)then the null hypothesis (H0) is rejected.

• If P − valueT (P − value corresponding to the Goodness-of-Fit distributional
test on the P − values obtained for a particular test i.e., a P − valueof theP −
values) ≥ 0.0001 then P − values can be considered uniformly distributed.

S. No. Statistical Test P − value corre-
sponding to the
goodness of fit
(P − valueT )

Proportion of se-
quences passing
the test

1. Frequency (monobit) test 0.249284 0.9700

2. Runs test 0.005428 0.9700

3. Test for longest run of ones in a
block

0.383827 1.0000

4. Lempel-Ziv compression test 0.000157 0.9600

5. Binary matrix rank test 0.867692 1.0000

6.
Cumulative sums test

1) Forward sums test 0.851383 0.9600

2) Reverse sums test 0.514124 0.9700

7. Discrete Fourier transform
(spectral) test

0.897763 1.0000

8.

Random excursions test

1) x = -4 0.585209 1.0000

2) x = -3 0.021262 1.0000

3) x = -2 0.186566 1.0000

4) x = -1 0.997147 0.9836

5) x = 1 0.619772 0.9836

6) x = 2 0.619772 1.0000

7) x = 3 0.095617 0.9836

8) x = 4 0.941144 1.0000
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Table 1: continued

9.

Random excursions variant test

1) x = -9 0.788728 0.9836

2) x = -8 0.900104 0.9836

2) x = -7 0.484646 0.9836

3) x = -6 0.484646 0.9836

4) x = -5 0.788728 1.0000

5) x = -4 0.756476 1.0000

7) x = -3 0.723129 1.0000

8) x = -2 0.452799 1.0000

9) x = -1 0.086458 1.0000

10) x = 1 0.900104 0.9672

11) x = 2 0.287306 0.9836

12) x = 3 0.957319 1.0000

13) x = 4 0.788728 1.0000

14) x = 5 0.078086 1.0000

15) x = 6 0.452799 1.0000

16) x = 7 0.364146 1.0000

17) x = 8 0.011931 1.0000

18) x = 9 0.003161 1.0000
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Table 2: Parameterized tests results

• Number of binary sequences tested (m): 100

• Length of each binary sequence: 1,000,000 bits

• Significance level (α) = 0.01

• The range of acceptable proportion is 0.99±0.02985

• Null hypothesis (H0): The binary sequence is random

• If P − value ≥ α (0.01)then the null hypothesis (H0) is accepted.

• If P − value < α (0.01)then the null hypothesis (H0) is rejected.

• If P − valueT (P − value corresponding to the Goodness-of-Fit distributional
test on the P − values obtained for a particular test i.e., a P − valueof theP −
values) ≥ 0.0001 then P − values can be considered uniformly distributed.

S. No. Statistical Test P − value corre-
sponding to the
goodness of fit
(P − valueT )

Proportion
of sequences
passing the
test

1. Frequency test within a block
(Block length = 128)

0.145326 0.9700

2. Approximate entropy test
(Block length = 10)

0.006265 0.9700

3. Linear complexity test
(Block length =500)

0.971699 0.9800

4. Maurer’s universal statistical test
(No. of blocks = 7, Block length =
1280)

0.419021 1.0000

5. Serial test
(Block length = 16)

0.798139 0.9900

6. Overlapping template matching test
(Template =111111111)

0.129620 0.9700
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Table 2: Continued
7. Non-overlapping template matching test

(Template length=9)

9) Template = 000000001 0.383827 0.9800

10) Template = 000100111 0.637119 0.9900

11) Template = 001010011 0.005358 0.9900

12) Template = 010001011 0.419021 0.9900

13) Template = 011101111 0.514124 1.0000

14) Template = 101101000 0.304126 0.9900

15) Template = 110101000 0.455937 0.9700

16) Template = 111000010 0.437274 1.0000

17) Template = 111100000 0.366918 0.9800

18) Template = 111111110 0.779188 0.9900
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Table 3: DIEHARD tests results

Test name & corresponding p-values No. of p-
values

1 Birthday spacing test
9

0.988763 0.219153 0.144182 0.760248 0.187449 0.512483 0.910415 0.923849
0.094988

2 The overlapping permutations test
2

0.973546 0.980946

3 Binary rank test

27(i) 31x31 0.901002

(ii) 32x32 0.855994

(iii) 6x8 0.064125 0.302897 0.941658 0.426312
0.766173 0.715484 0.838059 0.080130 0.195773 0.974842
0.249858 0.984198 0.971825 0.275149 0.517412 0.885706
0.052722 0.026866 0.022423 0.628286 0.244628 0.990259
0.437097 0.100355 0.918104

4 The monkey tests

102
(i) The bitstream
test

0.82420 0.87322 0.77173 0.76389 0.99775 0.82420 0.27074
0.66439 0.95206 0.87563 0.82958 0.99766
0.91765 0.76604 0.94620 0.80225 0.73796 0.23206 0.82055
0.99361

(ii) Overlapping-
Pairs-Sparse-
Occupancy
(OPSO)

0.9996 0.9629 0.8813 0.9645 0.9572 0.9701 0.9950 0.3366
0.9742 0.8976 0.9723 0.9961
0.8411 0.9892 0.9877 0.9999 0.9985 0.9990 0.5599 0.9918
0.9849 0.6664 0.3518

(iii)
Overlapping-
Quadruples-
Sparse-
Occupancy
(OQSO)

0.9548 0.4820 0.9170 0.8539 0.3184 0.9484 0.9724 0.4111
0.9211 0.9812 0.9371 0.9392
0.9175 0.9621 0.6748 0.7697 0.9236 0.4833 0.8615 0.9264
0.9924 0.9747 0.9977 0.9817
0.8097 0.9862 0.6893 0.6649

(iv) DNA Test 0.1918 0.2893 0.2186 0.4491 0.6801 0.3066 0.9841 0.2773
0.6620 0.4363 0.9588 0.3915
0.9646 0.4890 0.9600 0.7328 0.4843 0.8404 0.3769 0.6588
0.0778 0.3139 0.8361 0.5055
0.9282 0.9290 0.2588 0.9566 0.2743 0.1815 0.8883
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Table 3: Continued

5 Count the 1’s test
27

(i) in stream of
bytes

0.821983 0.888099

(ii) for specific
bytes

0.295819 0.663301 0.931640 0.030505 0.718611 0.237751
0.309827 0.297175 0.455678 0.956925 0.140010 0.120595
0.383329 0.339572 0.356567 0.592706 0.885688 0.445925
0.724707 0.770896 0.271070 0.781559 0.888849 0.234706
0.502525

6 Parking lot test 0.692266 0.481790 0.037471 0.554479 0.781201 0.041356
0.108811 0.117571 0.291865 0.572463

10

7 The minimum
distance test

0.849829 0.932613 0.815004 0.036007 0.323248 0.376892
0.899944 0.614205 0.553456 0.132279 0.258550 0.035251
0.804337 0.992632 0.654338 0.332773 0.668850 0.043199
0.808551 0.661693

20

8 The 3D spheres
test

0.77778 0.47420 0.25062 0.76921 0.48096 0.37490 0.82961
0.92404 0.62866 0.11081 0.36001 0.30289 0.01981 0.00226
0.92195 0.40129 0.78319 0.81086 0.08832 0.64228

20

9 The sqeeze test 0.224066 1

10 The overlapping
sums test

0.602870 0.979228 0.159121 0.588719 0.942497 0.290170
0.687853 0.083611 0.234358 0.446009

10

11 The runs test
4

(i) Up 0.529492 0.258671

(ii) Down 0.281869 0.089151

12 The craps test 0.251346 0.339478 2
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Abstract: The solution of Heisenberg Hamiltonian with second order perturbation will be
described for non-oriented spinel cubic ferrimagnetic materials. The perturbation related to
the change of angle at the interface of two cells will be considered. The energy peaks become
sharper and peak position varies in energy-angle curve as N is increased from 2 to 3. But the
separation between two consecutive major maximums remains same. The 3-D plot of total
energy versus angle and stress becomes smoother as N is increased from 2 to 3. The energy
decreases with number of layers indicating that the behavior of oriented and non-oriented films
is different. In N=2 case, minor maximums next to major maximum can be observed. When
second order anisotropy constant does not vary within the film with N=2, film behaves as an
oriented film.
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1. Introduction

In some early reports, the structure of spinel ferrites with the position of octahedral and

tetrahedral sites is given in detail [1-5]. Only the occupied octahedral and tetrahedral

sites were used for the calculation in this report, although there are many filled and vacant

octahedral and tetrahedral sites in cubic spinel cell [1]. Only few previous reports could

be found on the theoretical works of ferrites [6-9]. The solution of Heisenberg ferrites

only with spin exchange interaction term has been found earlier by means of the retarded

Green function equations [6].

∗ pubudus@phy.ruh.ac.lk



346 Electronic Journal of Theoretical Physics 6, No. 20 (2009) 345–356

All the relevant energy terms such as spin exchange energy, dipole energy, second

and fourth order anisotropy terms, interaction with magnetic field and stress induced

anisotropy in Heisenberg Hamiltonian were taken into consideration. These equations

derived here can be applied for spinel ferrites with unit cell AFe2O4 such as Fe3O4,

NiFe2O4 and ZnFe2O4 only. The spin exchange interaction energy and dipole interaction

have been calculated only between two nearest spin layers and within same spin plane.

Also the azimuthal angle of spins within one cubic cell is assumed to be constant. The

change of angle at the interface of cubic cell will be considered. According to some of our

early experimental reports, the anisotropy energy of Nickel ferrite and Lithium mixed

ferrite depends on the stress of the film induced during cooling or heating process of the

film [15, 16].

2. The Model

Classical Heisenberg Hamiltonian of a thin film can be written as following.

H= -J
∑
m,n

�Sm.�Sn + ω
∑

m�=n

(
�Sm.�Sn

r3
mn
− 3(�Sm.�rmn)(�rmn.�Sn)

r5
mn

)−
∑
m

D
(2)
λm

(Sz
m)2 −

∑
m

D
(4)
λm

(Sz
m)4

−
∑
m

�H.�Sm −
∑
m

KsSin2θm (1)

Here J, ω, θ, D
(2)
m , D

(4)
m , Hin, Hout, Ks, m, n and N are spin exchange interaction, strength of

long range dipole interaction, azimuthal angle of spin, second and fourth order anisotropy

constants, in plane and out of plane applied magnetic fields, stress induced anisotropy

constant, spin plane indices and total number of layers in film, respectively. When the

stress applies normal to the film plane, the angle between mth spin and the stress is θm.

The cubic cell was divided into 8 spin layers with alternative A and Fe spins layers

[1]. The spins of A and Fe will be taken as 1 and p, respectively. While the spins in one

layer point in one direction, spins in adjacent layers point in opposite directions. A thin

film with (001) spinel cubic cell orientation will be considered. The length of one side

of unit cell will be taken as “a”. Within the cell the spins orient in one direction due

to the super exchange interaction between spins (or magnetic moments). Therefore the

results proven for oriented case in one of our early report [11] will be used for following

equations. But the angle θ will vary from θm to θm+1 at the interface between two cells.

For a thin film with thickness Na,

Spin exchange interaction energy=

Eexchange = N(−10J + 72Jp− 22Jp2) + 8Jp

N−1∑
m=1

cos(θm+1 − θm)

Dipole interaction energy=Edipole

Edipole = −48.415ω
N∑

m=1

(1 + 3 cos 2θm) + 20.41ωp
N−1∑
m=1

[cos(θm+1 − θm) + 3 cos(θm+1 + θm)]
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Here the first and second term in each above equation represent the variation of energy

within the cell [11] and the interface of the cell, respectively.

Total energy

E = N(−10J + 72Jp− 22Jp2) + 8Jp
N−1∑
m=1

cos(θm+1 − θm)

− 48.415ω
N∑

m=1

(1 + 3 cos 2θm) + 20.41ωp
N−1∑
m=1

[cos(θm+1 − θm) + 3 cos(θm+1 + θm)]

−
N∑

m=1

[D(2)
m cos2 θm + D(4)

m cos4 θm]− 4(1− p)

N∑
m=1

[Hin sin θm + Hout cos θm + Ks sin 2θm]

(2)

Here the anisotropy energy term and the last term have been explained in our previous

report for oriented spinel ferrite [11]. If the angle is given by θm = θ+εm with perturbation

εm, after taking the terms up to second order perturbation of ε only,

The total energy can be given as

E(θ) = E0 + E(ε) + E(ε2)

Here

E0 = −10JN + 72pNJ − 22Jp2N + 8Jp(N − 1)− 48.415ωN − 145.245ωNcos(2θ)

+20.41ωp[(N-1)+3(N-1)cos(2θ)]

− cos2 θ

N∑
m=1

D(2)
m − cos4 θ

N∑
m=1

D(4)
m − 4(1− p)N(Hin sin θ + Hout cos θ + Ks sin 2θ) (3)

E(ε) = 290.5ω sin(2θ)
N∑

m=1

εm − 61.23ωp sin(2θ)
N−1∑
m=1

(εm + εn)

+ sin 2θ
N∑

m=1

D(2)
m εm + 2 cos2 θ sin 2θ

N∑
m=1

D(4)
m εm

+ 4(1− p)[−Hin cos θ

N∑
m=1

εm + Hout sin θ

N∑
m=1

εm − 2Ks cos 2θ

N∑
m=1

εm] (4)
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E(ε2) = −4Jp
N−1∑
m=1

(εn − εm)2 + 290.5ω cos(2θ)
N∑

m=1

ε2
m − 10.2ωp

N−1∑
m=1

(εn − εm)2

− 30.6ωp cos(2θ)

N−1∑
m=1

(εn + εm)2

− (sin2 θ − cos2 θ)

N∑
m=1

D(2)
m ε2

m + 2 cos2 θ(cos2 θ − 3 sin2 θ)

N∑
m=1

D(4)
m ε2

m

+ 4(1− p)[
Hin

2
sin θ

N∑
m=1

ε2
m +

Hout

2
cos θ

N∑
m=1

ε2
m + 2Ks sin 2θ

N∑
m=1

ε2
m] (5)

The sin and cosine terms in equation number 2 have been expanded to obtain above

equations. Here n=m+1.

Under the constraint
N∑

m=1

εm = 0, first and last three terms of equation 4 are zero.

Therefore, E(ε) = �α.�ε

Here �α(ε) = �B(θ) sin 2θ are the terms of matrices with

Bλ(θ) = −122.46ωp + D
(2)
λ + 2D

(4)
λ cos2 θ (6)

Also E(ε2) = 1
2
�ε.C.�ε, and matrix C is assumed to be symmetric (Cmn=Cnm).

Here the elements of matrix C can be given as following,

Cm,m+1 = 8Jp + 20.4ωp− 61.2pωcos(2θ)

For m=1 and N,

Cmm = −8Jp− 20.4ωp− 61.2pωcos(2θ) + 581ωcos(2θ)− 2(sin2 θ − cos2 θ)D(2)
m

+4 cos2 θ(cos2 θ − 3 sin2 θ)D(4)
m + 4(1− p)[Hin sin θ + Hout cos θ + 4Ks sin(2θ)] (7)

For m=2, 3, —-, N-1

Cmm = −16Jp− 40.8ωp− 122.4pωcos(2θ) + 581ωcos(2θ)− 2(sin2 θ − cos2 θ)D(2)
m

+4 cos2 θ(cos2 θ − 3 sin2 θ)D(4)
m + 4(1− p)[Hin sin θ + Hout cos θ + 4Ks sin(2θ)]

Otherwise, Cmn=0

Therefore, the total energy can be given as

E(θ) = E0 + �α.�ε +
1

2
�ε.C.�ε = E0 −

1

2
�α.C+.�α (8)

Here C+ is the pseudo-inverse given by

C.C+ = 1− E

N
. (9)

Here E is the matrix with all elements Emn=1.
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3. Results and Discussion

First a film with N=2 will be considered. When anisotropy constants D
(2)
m and D

(4)
m do

not vary within the film α1 = α2 from equation 6.

Then from equation 7, C11=C22 and C12=C21.

From equation 9, C+
12 = C+

21 = 1
2(C21−C22)

= −C+
11 = −C+

22

Therefore, �α.C+.�α = (α1 − α2)
2C+

11=0

Finally the energy E(θ)=E0 and film behaves as an oriented film. The exactly same

result was obtained for thin ferromagnetic films earlier [12].

If the anisotropy constants vary within the film, then C12=C21 and C11 �= C22.

Then C+
11 = −C+

12 = C22+C21

2(C11C22−C2
21)

and C+
21 = −C+

22 = C21+C11

2(C2
21−C11C

)
22

.

Hence, �α.C+.�α = (α1 − α2)
(C+

21α2 − C+
12α1)

When all the terms in equation 7 are taken into account, the C+
mn is contained more

than 80 terms. Therefore only the spin exchange interaction, spin dipole interaction,

second order anisotropy and stress induced anisotropy have been considered to avoid

tedious calculations.

Then

C11= -8Jp-20.4ωp-61.2pωcos(2θ)+581ωcos(2θ) + 2(cos 2θ)D
(2)
1 +16(1-p)Kssin(2θ)

C22= -8Jp-20.4ωp-61.2pωcos(2θ)+581ωcos(2θ) + 2(cos 2θ)D
(2)
2 +16(1-p)Kssin(2θ)

C12=8Jp+20.4ωp-61.2pωcos(2θ)

α1 =[-122.46ωp+D
(2)
1 ]sin(2θ)

α2 =[-122.46ωp+D
(2)
2 ]sin(2θ)

E(θ)=E0 − (α1−α2)(C+
21α2−C+

12α1)

2

E0= -20J+144pJ-44Jp2+8Jp-96.83ω-290.5ωcos(2θ)+20.41ωp[1+3cos(2θ)]

− cos2 θ[D
(2)
1 + D

(2)
2 ]− 4(1-p)NKssin(2θ)

This simulation will be performed for Nickel ferrite with p=2.5.

Then

C11= -20J-51ω+428ωcos(2θ) + 2(cos 2θ)D
(2)
1 -24Kssin(2θ)

C22= -20J-51ω+428ωcos(2θ) + 2(cos 2θ)D
(2)
2 -24Kssin(2θ)

C12=20J+51ω-153ωcos(2θ)

E0= 85J-96.83ω-290.5ωcos(2θ)+51.03ω[1+3cos(2θ)]− cos2 θ[D
(2)
1 + D

(2)
2 ]

+12Kssin(2θ)

Then E(θ) can be found using equation 8. When θ = 00 and θ=900, the second order

perturbation energy term is zero and film behaves as an oriented film. The graph between
E(θ)

ω
and θ is given in figure 1, for J

ω
=

D
(2)
1

ω
= Ks

ω
= 10,

D
(2)
2

ω
= 5. Nearest maximum and

minimum can be observed at 630 and 860, respectively. Therefore the angle between easy

and hard directions is not 900 in this case. Two consecutive maximums can be observed

at 630 and 240.70.

When Ks

ω
is a variable, the 3-D plot of E(θ)

ω
versus θ and Ks

ω
is given in figure 2. This

graph shows a variation similar to oriented spinel ferrite films [11]. The graph indicates

several minimums indicating that film can be easily oriented in some particular directions

by applying a stress.
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When N=3, the each C+
nm element found using equation 9 is contained more than 20

terms. To avoid this problem, matrix elements were found using C.C+=1. Then C+
mn is

given by C+
mn = cofactorCnm

det C
. Under this condition, �E.�α = 0, and the average value of first

order perturbation is zero [12]. The second order anisotropy constant is assumed to be

an invariant for the convenience.

Then C11=C33, C12=C21=C23=C32, C13=C31=0, α1 = α2 = α3.

C11=C33= -20J-51ω+428ωcos(2θ) + 2(cos 2θ)D
(2)
m -24Kssin(2θ)

C22= -40J-102ω + 275ωcos(2θ) + 2(cos 2θ)D
(2)
m -24Kssin(2θ)

Therefore12, C+
11 =

C11C22−C2
32

C2
11C22−2C2

32C11
= C+

33,C
+
13 =

C2
32

C2
11C22−2C2

32C11
= C+

31

C+
12 =

−C32C11

C2
11C22 − 2C2

32C11

= C+
21 = C+

23 = C+
32, C

+
22 =

C2
11

C2
11C22 − 2C2

32C11

The total energy can be found using following equation.

E(θ)=E0-0.5[C+
11(2α

2
1)+C+

32(4α
2
1)+C+

31(2α
2
1) + α2

1C
+
22]

Here E0= 137.5J-145.245ω-435.735ωcos(2θ)+102.05ω[1+3cos(2θ)]

− cos2 θ[D
(2)
1 + D

(2)
2 + D

(2)
3 ] + 18Kssin(2θ)

The graph between E(θ)
ω

and θ is given in figure 3, for J
ω

= D
(2)
m

ω
= Ks

ω
= 10.

These peaks become sharper compared with those given figure 1 for spinel ferrite films

with N=2 and ferromagnetic thin films of N=3 with 2nd order perturbation described

in one of our early report [12]. Two consecutive maximums can be observed at 230

and 970. But the peak positions are different from those given in figure 1. Energy is

smaller compared with N=2 spinel ferrite films given in figure 1. But energy is higher

compared with ferromagnetic thin films [12] with N=3. Although it is difficult to find

any experimental reports related to the thickness or angle dependence of magnetic energy

of Nickel ferrite thin films, this kind of phenomena has been observed for Co-ferrite and

Mn-Zn ferrite thin films. The energy of these Co- ferrite films depends on the thickness

[13]. Also the easy direction (or preferred orientation direction) of Mn-Zn ferrite thin

films varies with the thickness of the film [14]. According to figure 1 and 3, the angle

corresponding to energy minimum varies with the thickness or number of layers (N). But

the numerical values of Nickel ferrite films obtained here can not be compared with the

numerical values obtained for Co-ferrite or Mn-Zn ferrite films.

When Ks

ω
is a variable, the 3-D plot of E(θ)

ω
versus θ and Ks

ω
is given in figure 4. This

graph shows a higher variation of energy and higher maximum energy compared with

ferromagnetic thin films with N=3. Compared with figure 2, energy is less in this case.

Some experimental evidences confirm that the energy of Co-ferrite thin films depend on

the residual stress [13]. Also the anisotropy energy of Nickel ferrite and Lithium mixed

ferrite films depends on the induced stress [15, 16].

Conclusion

The energy peaks become sharper and peak position varies in energy-angle curve as N

is increased from 2 to 3. But the separation between two consecutive major maximums
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remains same. The angle between easy and hard directions is not 900. The 3-D plot of
E(θ)

ω
versus θ and Ks

ω
becomes smoother as N is increased from 2 to 3. Unlike the oriented

spinel ferrite films, the energy decreases with number of layers in this case according to

figure 1, 2, 3 and 4. Some experimental results also indicate that the anisotropy energy

depends on the thickness and stress inside the film, and the easy direction depends on the

thickness of the ferrite films. In case N=2, minor maximums next to major maximum can

be observed. These simulations can be performed for any other ferrite and some other

values of J
ω
, D

(2)
m

ω
and Ks

ω
.
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Fig. 1 Graph between E(θ)
ω and θ for Ks

ω =10 with the effect of variable second order anisotropy
for N=2.
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Fig. 2 3-D plot of E(θ)
ω versus Ks

ω and θ with the effect of variable second order anisotropy for
N=2.
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Fig. 3 Graph between E(θ)
ω and θ for Ks

ω =10 with the effect of invariant second order anisotropy
for N=3.
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Fig. 4 3-D plot of E(θ)
ω versus Ks

ω and θ with the effect of invariant second order anisotropy for
N=3.
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Abstract: The theoretical study of the superconducting state parameters (SSP) viz.
electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature
TC , isotope effect exponent α and effective interaction strength NOV of Pb-Tl-Bi alloys
viz. Tl0.90 Bi0.10 , Pb0.40Tl0.60 , Pb0.60Tl0.40 , Pb0.80Tl0.20 , Pb0.60Tl0.20 Bi0.20 , Pb0.90Bi0.10 ,
Pb0.80Bi0.20 , Pb0.70Bi0.30 , Pb0.65 Bi0.35 and Pb0.45Bi0.55 have been made extensively in the
present work using a model potential formalism for the first time. A considerable influence of
various exchange and correlation functions on λ and μ∗ is found from the present study. The
present results of the SSP are found in qualitative agreement with the available experimental
data wherever exist.
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1. Introduction

During last several years, the superconductivity remains a dynamic area of research in

condensed matter physics with continual discoveries of novel materials and with an in-

creasing demand for novel devices for sophisticated technological applications. A large

number of metals and amorphous alloys are superconductors, with critical temperature

TC ranging from 1-18K. Even some heavily doped semiconductors have also been found to

be superconductors. Basically, all the metal superconductors are type-I superconductors

at room temperature [1-13]. The pseudopotential theory has been used successfully in

explaining the superconducting state parameters (SSP) for metallic complexes by many

workers [1-13]. Many of them have used well known model pseudopotential in the calcu-

∗ Tel.: +91-2832-256424, E-mail address: voraam@yahoo.com.
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lation of the SSP for the metallic complexes. Recently, Vora et al. [3-11] have studied

the SSP of some metals, In-based binary alloys, alkali-alkali binary alloys and large num-

ber of metallic glasses using single parametric model potential formalism. The study

of the SSP of the binary alloy based superconductors may be of great help in deciding

their applications; the study of the dependence of the transition temperature TC on the

composition of metallic elements is helpful in finding new superconductors with high TC .

The application of pseudopotential to binary alloys involves the assumption of pseudoions

with average properties, which are assumed to replace three types of ions in the binary

systems, and a gas of free electrons is assumed to permeate through them. The electron-

pseudoion is accounted for by the pseudopotential and the electron-electron interaction

is involved through a dielectric screening function. For successful prediction of the super-

conducting properties of the alloying systems, the proper selection of the pseudopotential

and screening function is very essential [3-11].

A well known empty core (EMC) model potential of Ashcroft [14] is applied here in

the study of the SSP viz. electron-phonon coupling strength λ, Coulomb pseudopoten-

tial μ∗, transition temperature TC , isotope effect exponent α and effective interaction

strength NOV of Pb-Tl-Bi alloys viz. Tl0.90Bi0.10, Pb0.40Tl0.60, Pb0.60Tl0.40, Pb0.80Tl0.20,

Pb0.60Tl0.20Bi0.20, Pb0.90Bi0.10, Pb0.80Bi0.20, Pb0.70Bi0.30, Pb0.65Bi0.35 and Pb0.45Bi0.55. To

see the impact of various exchange and correlation functions on the aforesaid properties,

we have used five different types of local field correction functions proposed by Hartree

(H) [15], Taylor (T) [16], Ichimaru-Utsumi (IU) [17], Farid et al. (F) [18] and Sarkar et al.

(S) [19]. We have incorporated for the first time the more advanced and newly developed

local field correction functions i.e. IU [17], F [18] and S [19] in the investigation of the

SSP of Pb-Tl-Bi alloys.

To describe electron-ion interactions in the binary systems, the Ashcroft’s empty core

(EMC) single parametric local model potential [14] is employed in the present investiga-

tion. The form factor W (q) of the EMC model potential in wave number space is (in au)

[14]

W (q) =
−8πZ

ΩOq2ε (q)
cos (qrC) . (1)

here,Z, ΩOε (q) and rC are the valence, atomic volume, Hartree dielectric function and

parameter of the model potential of Pb-Tl-Bi alloys, respectively.

2. Method of Computation

In the present investigation for binary mixtures, the electron-phonon coupling strength

λ is computed using the relation [3-11]

λ =
mbΩo

4π2kFM〈ω2〉

2kF∫
0

q3 |W (q)|2 dq (2)

Here mb is the band mass, M the ionic mass, ΩO the atomic volume, kF the Fermi wave

vector and W (q) the screened pseudopotential. The effective averaged square phonon
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frequency 〈ω2〉 is calculated using the relation given by Butler [20], 〈ω2〉1/2 = 0.69 θD,

where θD is the Debye temperature of the Pb-Tl-Bi alloys.

Using X = q/2kF and ΩO = 3π2Z/(kF )3, we get Eq. (2) in the following form,

λ =
12mbZ

M〈ω2〉

1∫
0

X3 |W (X)|2 dX (3)

where Z and W (X) are the valence and the screened EMC pseudopotential [13] of

the Pb-Tl-Bi alloys, respectively.

The Coulomb pseudopotential μ∗ is given by [3-11]

μ∗ =

mb

πkF

1∫
0

dX
ε(X)

1 + mb

πkF
ln
(

EF

10θD

) 1∫
0

dX
ε(X)

(4)

Where EF is the Fermi energy, mb the band mass of the electron and ε (X) the modified

Hartree dielectric function, which is written as [15]

ε (X) = 1 + (εH (X)− 1) (1− f (X)) . (5)

εH (X) is the static Hartree dielectric function [15] and f (X) the local field correction

function. In the present investigation, the local field correction functions due to H [15],

T [16], IU [17], F [18]and S [19] are incorporated to see the impact of exchange and

correlation effects.

After evaluating λ and μ∗, the transition temperature TC and isotope effect exponent

α are investigated from the McMillan’s formula [3-11]

TC =
θD

1.45
exp

[
−1.04 (1 + λ)

λ − μ∗ (1 + 0.62λ)

]
, (6)

α =
1

2

[
1−

(
μ∗ ln

θD

1.45TC

)2
1 + 0.62λ

1.04 (1 + λ)

]
. (7)

The expression for the effective interaction strength NOV is studied using [3-11]

NOV =
λ − μ∗

1 + 10
11

λ
. (8)

3. Results and Discussion

The input parameters and constants used in the present calculations are given in Table 1.

Table 2 shows the presently calculated values of the SSP viz. electron-phonon coupling

strength λ, Coulomb pseudopotential μ∗, transition temperature TC , isotope effect ex-

ponent α and effective interaction strength NOV at various concentrations for Pb-Tl-Bi

alloys with available experimental findings [21].



360 Electronic Journal of Theoretical Physics 6, No. 20 (2009) 357–366

The calculated values of the electron-phonon coupling strength λ for Pb-Tl-Bi alloys,

using five different types of the local field correction functions with EMC model potential,

are shown in Table 2 with the experimental data [21]. It is noticed from the present study

that, the percentile influence of the various local field correction functions with respect

to the static H-screening function on the electron-phonon coupling strength λ is

26.52%-49.52%, 26.42%-51.81%, 26.08%-52.21%, 25.67%-51.91%, 25.72%-60.06%, 25.20%-

51.46%, 25.14%-51.69%, 25.11%-52.15%, 25.11%-52.67% and 25.28%-51.24% for

Tl0.90Bi0.10, Pb0.40Tl0.60, Pb0.60Tl0.40, Pb0.80Tl0.20, Pb0.60Tl0.20Bi0.20, Pb0.90Bi0.10, Pb0.80Bi0.20,

Pb0.70Bi0.30, Pb0.65Bi0.35 and Pb0.45Bi0.55 alloys, respectively. Also, the H-screening yields

lowest values of λ, whereas the values obtained from the F-function are the highest. It is

also observed from the Table 2 that, λ goes on increasing from the values of 0.9788→1.8834

as the concentration ‘x’ of ‘Tl’ is decreased from 0.60→0.20, while for concentration ‘x’

of ‘Bi’ increases except αPb0.45Bi0.55alloys, λ goes on increasing. The increase or decrease

in λ with concentration ‘x’ of ‘Tl’ and ‘Bi’ shows a gradual transition from weak cou-

pling behaviour to intermediate coupling behaviour of electrons and phonons, which may

be attributed to an increase of the hybridization of sp-d electrons of ‘Tl’ and ‘Bi’ with

increasing or decreasing concentration (x). This may also be attributed to the increase

role of ionic vibrations in the Tl or Bi-rich region. The present results are found in quali-

tative agreement with the available experimental data [21]. The calculated results of the

electron-phonon coupling strength λ for Tl0.90Bi0.10, Pb0.40Tl0.60, Pb0.60Tl0.40, Pb0.80Tl0.20,

Pb0.60Tl0.20Bi0.20, Pb0.90Bi0.10, Pb0.80Bi0.20, Pb0.70Bi0.30, Pb0.65Bi0.35 and Pb0.45Bi0.55 devi-

ate in the range of 8.68%-36.54%, 7.60%-29.21%, 3.40%-24.83%, 1.84%-23.10%, 23.27%-

52.06%, 0.81%-20.78%, 1.36%-29.07%, 1.58%-31.30%, 2.70%-32.31% and 33.28%-55.88%

alloys from the available experimental findings [21], respectively.

The computed values of the Coulomb pseudopotential μ∗, which accounts for the

Coulomb interaction between the conduction electrons, obtained from the various forms

of the local field correction functions are tabulated in Table 2. It is observed from the Ta-

ble 2 that for all binary alloys, the μ∗ lies between 0.11 and 0.14, which is in accordance

with McMillan [22], who suggested μ∗ ≈ 0.13 for simple and non-simple metals. The

weak screening influence shows on the computed values of the μ∗. The percentile influ-

ence of the various local field correction functions with respect to the static H-screening

function on μ∗ for the Pb-Tl-Bi alloys is observed in the range of

4.77%-9.04%, 4.73%-8.86%, 4.66%-8.82%, 4.60%-8.77%, 5.02%-9.56%, 4.52%-8.70%, 4.60%-

8.69%, 4.59%-8.76%, 4.59%-8.75% and 4.63%-8.84% for

Tl0.90Bi0.10, Pb0.40Tl0.60, Pb0.60Tl0.40, Pb0.80Tl0.20, Pb0.60Tl0.20Bi0.20, Pb0.90Bi0.10, Pb0.80Bi0.20,

Pb0.70Bi0.30, Pb0.65Bi0.35 and Pb0.45Bi0.55 alloys, respectively. Again the H-screening func-

tion yields lowest values of the μ∗, while the values obtained from the F-function are the

highest. The theoretical or experimental data of the μ∗ is not available for the further

comparisons.

Table 2 contains calculated values of the transition temperature TC for Pb-Tl-Bi alloys

computed from the various forms of the local field correction functions along with the

experimental findings [21]. From the Table 2 it can be noted that, the static H-screening
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function yields lowest TC whereas the F-function yields highest values of the TC . The

present results obtained from the H-local field correction functions are found in good

agreement with available experimental data [21]. The calculated results of the transition

temperature TC for Pb-Tl-Bi alloys viz. Tl0.90Bi0.10, Pb0.40Tl0.60, Pb0.60Tl0.40, Pb0.80Tl0.20,

Pb0.60Tl0.20Bi0.20, Pb0.90Bi0.10, Pb0.80Bi0.20, Pb0.70Bi0.30, Pb0.65Bi0.35 and Pb0.45Bi0.55 devi-

ate in the range of 0.05%-115.39%, 0.01%-68.53%, 0.04%-55.03%, 0.02%-47.79%, 0.01%-

99.72%, 0.03%-43.59%, 0.00%-42.90%, 0.02%-41.19%, 0.01%-41.10% and 0.06%-53.58%

from the experimental findings [21], respectively.

The values of the isotope effect exponent α for Pb-Tl-Bi alloys are tabulated in Table

2. The computed values of the α show a weak dependence on the dielectric screening, its

value is being lowest for the H- screening function and highest for the F-function. Since

the experimental value of α has not been reported in the literature so far, the present data

of α may be used for the study of ionic vibrations in the superconductivity of alloying

substances. Since H-local field correction function yields the best results for λ and TC ,

it may be observed that α values obtained from this screening provide the best account

for the role of the ionic vibrations in superconducting behaviour of this system. The

theoretical or experimental data of the α is not available for the further comparisons.

The values of the effective interaction strength NOV are listed in Table 2 for different

local field correction functions. It is observed that the magnitude of NOV shows that the

Pb-Tl-Bi alloys under investigation lie in the range of weak coupling superconductors.

The values of the NOV also show a feeble dependence on dielectric screening, its value

being lowest for the H-screening function and highest for the F-screening function. The

variation of present values of the NOV show that, the Pb-Tl-Bi alloys under consideration

falls in the range of weak coupling superconductors. The theoretical or experimental data

of the NOV is not available for the further comparisons.

From the study of the Table 2, one can see that among the five screening functions

the screening function due to H (only static–without exchange and correlation) gives the

minimum value of the SSP while the screening function due to F gives the maximum

value. The present findings due to T, IU and S-local field correction functions are lying

between these two screening functions. The local field correction functions due to IU,

F and S are able to generate consistent results regarding the SSP of Pb-Tl-Bi alloys as

those obtained for more commonly employed H and T functions. The effect of local field

correction functions plays an important role in the computation of λ and μ∗, which makes

drastic variation on TC , α and NOV . Thus, the use of these more promising local field

correction functions is established successfully. The computed results of α and NOV are

not showing any abnormal values for Pb-Tl-Bi alloys.

The values of the electron-phonon coupling strength λ and the transition temperature

TC show an appreciable dependence on the local field correction function, whereas for the

Coulomb pseudopotential μ∗, isotope effect exponent α and effective interaction strength

NOV a weak dependence is observed. The magnitude of the λ, α and NOV values shows

that Pb-Tl-Bi alloys are weak to intermediate superconductors. In the absence of exper-

imental data for α and NOV , the presently computed values of these parameters may
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be considered to form reliable data for Pb-Tl-Bi alloys, as they lie within the theoretical

limits of the Eliashberg-McMillan formulation.

Lastly, we would like to emphasize the importance of involving a precise form for

the pseudopotential. It must be confessed that although the effect of pseudopotential

in strong coupling superconductor is large, yet it plays a decisive role in weak coupling

superconductors i.e. those substances which are at the boundary dividing the supercon-

ducting and nonsuperconducting region. In other words, a small variation in the value of

electron-ion interaction may lead to an abrupt change in the superconducting properties

of the material under consideration. In this connection we may realize the importance of

an accurate form for the pseudopotential.

Conclusions

The comparison of presently computed results with available experimental findings is

highly encouraging in the case of Pb-Tl-Bi alloys, which confirms the applicability of the

model potential. The theoretically observed values of SSP are not available for most of

the Pb-Tl-Bi alloys therefore it is difficult to draw any special remarks. However, the

comparison with other such theoretical data supports the present computations of the

SSP. Such study on SSP of other binary and multi component alloys as well as metallic

glasses is in progress.
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Table 1. Input parameters and other constants.

Alloys Z rC

(au)
ΩO

(au)3
kF

(au)
M

(amu)
θD

(K)

〈
ω2
〉2(au)2 x 10−6

Tl0.90Bi0.10 3.20 0.9910 196.47 0.7842 204.83 90.20 0.15644

Pb0.40Tl0.60 3.40 0.8935 196.38 0.8003 205.5 90.72 0.15825

Pb0.60Tl0.40 3.60 0.8482 198.72 0.8125 206.06 92.58 0.16481

Pb0.80Tl0.20 3.80 0.8237 201.06 0.8241 206.63 94.44 0.17150

Pb0.60Tl0.20Bi0.20 4.00 0.2349 208.26 0.8285 206.98 190.00 0.69415

Pb0.90Bi0.10 4.10 0.8004 207.00 0.8370 207.37 98.57 0.18682

Pb0.80Bi0.20 4.20 0.7874 210.60 0.8390 207.55 100.84 0.19553

Pb0.70Bi0.30 4.30 0.7662 214.20 0.8408 207.73 103.11 0.20443

Pb0.65Bi0.35 4.35 0.7452 216.00 0.8417 207.82 104.25 0.20898

Pb0.45Bi0.55 4.55 0.8157 223.20 0.8451 208.17 108.79 0.22757
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Table 2. Superconducting state parameters of the Pb-Tl-Bi alloys.

Alloys SSP Present results Expt. [21]

H T IU F S

Tl0.90Bi0.10

λ 0.7123 1.0067 1.0621 1.0650 0.9012 0.78

μ∗ 0.1195 0.1288 0.1300 0.1303 0.1252 -

TC 2.3011 4.5437 4.9372 4.9540 3.7799 2.30

α 0.4372 0.4558 0.4580 0.4580 0.4515 -

N0V 0.3598 0.4584 0.4742 0.4749 0.4265 -

Pb0.40Tl0.60

λ 0.9788 1.3999 1.4795 1.4859 1.2374 1.15

μ∗ 0.1185 0.1276 0.1288 0.1290 0.1241 -

TC 4.6004 7.2982 7.7222 7.7522 6.3648 4.60

α 0.4627 0.4719 0.4730 0.4730 0.4695 -

N0V 0.4553 0.5599 0.5760 0.5772 0.5239 -

Pb0.60Tl0.40

λ 1.1317 1.6220 1.7141 1.7226 1.4269 1.38

μ∗ 0.1179 0.1269 0.1281 0.1283 0.1234 -

TC 5.9021 8.6916 9.1119 9.1465 7.7143 5.90

α 0.4697 0.4764 0.4773 0.4773 0.4746 -

N0V 0.4997 0.6042 0.6199 0.6213 0.5674 -

Pb0.80Tl0.20

λ 1.2398 1.7739 1.8738 1.8834 1.5581 1.53

μ∗ 0.1174 0.1263 0.1275 0.1277 0.1228 -

TC 6.8014 9.6015 10.0139 10.0497 8.6140 6.80

α 0.4733 0.4788 0.4794 0.4795 0.4772 -

N0V 0.5277 0.6306 0.6460 0.6473 0.5940 -

Pb0.60Tl0.20Bi0.20

λ 0.8677 1.2976 1.3726 1.3888 1.0909 1.81

μ∗ 0.1276 0.1382 0.1396 0.1398 0.1340 -

TC 7.2606 13.4096 14.3079 14.4995 10.6459 7.26

α 0.4460 0.4625 0.4641 0.4645 0.4564 -

N0V 0.4137 0.5319 0.5485 0.5520 0.4804 -

Pb0.90Bi0.10

λ 1.3151 1.8770 1.9815 1.9919 1.6465 1.66

μ∗ 0.1172 0.1260 0.1272 0.1274 0.1225 -

TC 7.6521 10.5294 10.9469 10.9849 9.5032 7.65

α 0.4753 0.4800 0.4806 0.4806 0.4787 -

N0V 0.5456 0.6470 0.6619 0.6633 0.6104 -
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Pb0.80Bi0.20

λ 1.3335 1.9055 2.0117 2.0228 1.6688 1.88

μ∗ 0.1174 0.1262 0.1274 0.1276 0.1228 -

TC 7.9501 10.8947 11.3199 11.3602 9.8361 7.95

α 0.4756 0.4802 0.4808 0.4808 0.4789 -

N0V 0.5497 0.6512 0.6661 0.6676 0.6142 -

Pb0.70Bi0.30

λ 1.3809 1.9782 2.0888 2.1011 1.7277 2.01

μ∗ 0.1176 0.1265 0.1277 0.1279 0.1230 -

TC 8.4518 11.4578 11.8872 11.9309 10.3650 8.45

α 0.4765 0.4808 0.4814 0.4814 0.4795 -

N0V 0.5601 0.6617 0.6765 0.6781 0.6243 -

Pb0.65Bi0.35

λ 1.4418 2.0711 2.1875 2.2012 1.8039 2.13

μ∗ 0.1177 0.1266 0.1278 0.1280 0.1231 -

TC 8.9511 11.9763 12.4032 12.4496 10.8663 8.95

α 0.4776 0.4816 0.4821 0.4821 0.4804 -

N0V 0.5730 0.6745 0.6892 0.6908 0.6367 -

α Pb0.45Bi0.55

λ 1.1426 1.6289 1.7195 1.7281 1.4315 2.59

μ∗ 0.1188 0.1278 0.1291 0.1293 0.1243 -

TC 7.0042 10.2267 10.7090 10.7508 9.0714 7.0

α 0.4696 0.4761 0.4769 0.4770 0.4743 -

N0V 0.5022 0.6051 0.6205 0.6219 0.5680 -
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Abstract: This paper shows that quantum chaotic oscillator Hamiltonian H = px generates
Riemann zeta function zeros as energy eigenvalues assuming validity of the Riemann hypothesis.
We further put this on a firmer ground proving rigorously the Riemann hypothesis. We
next introduce reformulation of special theory of relativity by which chaotic oscillator motion
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1. Introduction to Chaotic Quantum Oscillator

Chaos is all around us. Consider a flame from the cigarette lighter, for instance. Or

fractal patterns in a leaf on a tree. Nature is chaotic.

One of the simplest chaotic systems is chaotic oscillator [1]. One is simply to com-

plexify the harmonic oscillator Hamiltonian H = p2 +x2 by substituting x→ ix, turning

it thus into chaotic Hamiltonian

H = p2 − x2 (1)

After performing canonic rotation

p→ p− x

x→ p + x
(2)

upon (1), we reach chaotic oscillator Hamiltonian in simpler form

H = px (3)

∗ ihrncic1@yahoo.com
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Classically, Hamilton equations for this Hamiltonian are

ẋ = ∂H
∂p

= x

ṗ = −∂H
∂x

= −p
(4)

These equations integrate to

x (t) = x0e
t

p(t) = p0e
−t

(5)

These equations represent unstable trajectories reflecting the fact that system described

by Hamiltonian H = px is chaotic.

To rewrite Hamiltonian (3) for quantum system, we are simply to symmetrize it as

follows,

H =
1

2
(px + xp) (6)

Hamiltonian (6) is obviously hermitean. Its differential form is

H = −i

(
x

d

dx
+

1

2

)
(7)

Coordinate representation eigenfunctions ψ(x) satisfying Schroedinger eigenequation

Hψ(x) = Eψ(x) (8)

with energy E being constant of motion for given orbit are

ψ(x) =
A

x1/2−iE
(9)

Impulse representation eigenfunction φ(p) is simply Fourier transform of coordinate eigen-

function ψ(x),

φ(p) =
1√
2π

∞∫
−∞

ψ(x)e−ipxdx =
A√
2π

∞∫
−∞

e−ipx

x1/2−iE
dx (10)

To evaluate this integral, we have to handle singularity of integrand at x = 0. To do this,

it is appropriate to require x → |x|. This enables us to calculate integral (10) and we

find

φ(p) =
A2iE

|p|1/2+iE

Γ
(

1
4

+ iE
2

)
Γ
(

1
4
− iE

2

) =
A

√
2π

∣∣ p
2π

∣∣1/2+iE
e2iθ(E) (11)

Here function θ(E) = arg Γ
(

1
4

+ iE
2

)
− t

2
log π is actually the argument of the Riemann

zeta function on the critical line �s = 1/2.

We have encountered the Riemann zeta function while investigating the chaotic os-

cillator. Riemann zeta function zeros density function has mean value [1]

〈N (E)〉 =
θ(E)

π
+ 1 =

E

2π
log

(
E

2π

)
+

7

8
+ O

(
1

E

)
(12)
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Next we count quantum states of chaotic oscillator with Hamiltonian (6). Mean

number of states of energy lesser than E is simply area under the contour H = E in

phase space (x, p). For Hamiltonian (6) this area is unbound because classical motion (5)

generated by H is not bound. To overcome this obstacle, we have to regularize position

x and impulse p by trucating them, x > xmin, p > pmin. We can always truncate any

physical system [2]. When thus calculated, mean density of states of H is exactly (12).

Hence, there are asymptotically as many states of H as Riemann zeta function nontrivial

zeros in the mean. Because of this fact we deliberately chose x→ |x| to be the appropriate

continuation over integrand singularity when evaluating integral (11).

Further connection of chaotic quantum oscillator with Riemann zeta function comes

from considering an appropriate boundary condition [1] for wave-functions (9) and (11).

Intriguing relation coming from this boundary condition is [1]

x1/2ζ (1/2− iE) ψ(x)− p1/2ζ (1/2 + iE) φ(p) = 0 (13)

Here x and p are ordinary real numbers. This condition does not seem to generate

Riemann zeta function nontrivial zeros because of the difference in signs of energy E in

zeta functions in (13), nor can be easily explained as a boundary condition geometrically,

since it mixes both x and p.

This is as far as one gets when considering chaotic quantum oscillator given by Hamil-

tonian H = px so far.

2. Riemann Zeta Function Zeros Spectrum

We next consider equation (13). Let us rewrite it as

x1/2ζ (1/2− iE) ψ(x) = p1/2ζ (1/2 + iE) φ(p) (14)

Since energy E being constant for given eigen-state ψ(x), we notice that left hand side

of Eq. (14) is function of x only. Similarly, right hand side of Eq. (14) is function of p

only. These two sides being equal, we conclude that they are both equal to some constant

C(E), ie.

x1/2ζ (1/2− iE) ψ(x) = C(E)

p1/2ζ (1/2 + iE) φ(p) = C(E)
(15)

These equations are now easily turned into a boundary condition.

With wave-function ψ(x) defined in (9), first of equations (15) becomes

AxiEζ (1/2− iE) = C(E) (16)

Since the system we are considering is chaotic, positions x are not constants of motion,

but change with time. So there is only one way to fullfill requirement (16), namely to

have C(E) = 0. Then the value of x does not metter. Condition

C(E) = 0 (17)
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is fullfilled as soon as

ζ (1/2− iE) = 0 (18)

This condition, being part of the boundary condition for wave-functions of chaotic quan-

tum oscillator, obviously generates Riemann zeta function nontrivial zeros.

Hence, spectrum of chaotic quantum oscillator given by Hamiltonian (6) consists solely

of imaginary parts of not necessarily all of the Riemann zeta function nontrivial zeros on

the critical line �s = 1/2.

There is still one interesting point about this result. Hilbert and Polya showed that if

one manages to find Hermitean Hamiltonian such that eigenenergies of that Hamiltonian

be imaginary parts of all of the Riemann zeta function nontrivial zeros, then this way

one actually proves the Riemann hypothesis, saying that all the Riemann zeta function

nontrivial zeros have real part �s = 1/2. Similar to condition (18).

We actually did not prove the Riemann hypothesis, because condition (18) involves

only the Riemann zeta function nontrivial zeros on the critical line �s = 1/2 and does not

concern rest of them from entire critical strip 0 < �s < 1. However, if one is able to prove

the Riemann hypothesis independently of results exposed so far, ie. without concerning

Hamiltonian H = px, say by purely analytic methods, then Hamiltonian H = px would

prove to be the candidate for Hamiltonian Hilbert and Polya wrote about.

Actually, we are able to prove the Riemann hypothesis rigorously by purely analytic

and almost elementary methods, and this is what we do next.

3. Introduction to Riemann Zeta Function

Euler was the first to consider the Riemann zeta function. He was also the first to consider

the prime number counting function π(r) counting primes p ≤ r.

Riemann gave the complete analytic treatment of zeta function [3,4,5,6] defined as

ζ(s) =
∞∑

n=1

n−s (19)

in the complex half plane �s > 1. He showed that zeta function continues analytically

over entire complex plane as a meromorphic function with a pole at s = 1. Riemann

showed that zeta function nontrivial zeros ρ = σ + it are situated symmetrically with

respect to point s = 1/2 in the strip 0 ≤ �s ≤ 1.

I find neccessary to point to a fact that there are no zeta function zeros[7] on the

line �s = 1. Therefore, there are no zeta function zeros on line �s = 0 being centrally

symmetric to the line �s = 1 with respect to point s = 1/2.

Hence, we may consider region 0 < �s < 1 to be the critical strip where all the

nontrivial zeta function zeros are located. Let us therefore henceforth refer to the strip

0 < �s < 1 as to the critical strip.

Primes counting function behaves asymptotically as

π(r) = Li(r) +O(rθ log r) (20)
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with 1/2 ≤ θ < σ. Hence, if σ = 1/2 then the uncertainty in θ is minimal and θ = 1/2.

Hence the importance of the Riemann hypothesis,

The Riemann hypothesis: Zeta function nontrivial zeros have real part equal to

1/2.

One of integral representations of zeta function valid for any s from the critical strip

0 < �s < 1 is[8]

ζ(s) =
1

Γ(s)

∞∫
0

(
1

ep − 1
− 1

p

)
ps−1dp (21)

4. Definition and Lemma

4.1 Definition

Define family F as family of functions F (s) analytic and single-valued in complex variable

s in critical strip 0 < �s < 1, satisfying following three conditions:

Condition A Zeros ρ = σ+ it of F (s) are located symmetrically with respect to point

s = 1/2 in the critical strip 0 < �s < 1.

Condition B There exists real function f(p), continuous in real variable p ∈ R+,

such that Mellin transform

F (s) =

∞∫
0

f(p)ps−1dp (22)

exists for s in the critical strip.

Condition C lim
p→0+

pσ
(
1 + log2 p

) df(p)
dp

= 0

Hence, by the theory of Mellin transformation, we conclude from Eq. (22) that

f(p) = O(1) as p→ 0+ for 0 < �s < 1.

We notice that condition C follows from f(p) = O(1) as p→ 0+ for 0 < �s < 1. We

keep condition C as a distinct condition simply for having it at our disposal explicitely.

We also notice by inspecting Mellin transform (22) that function F (s) is real on

real axis. Hence by the Schwarz principle of reflection we conclude that F (s̄) = F̄ (s).

Therefore nontrivial zeros ρ are distributed symmetrically with respect to real axis.

4.2 Lemma

In order to prove the Riemann hypothesis we should start by proving the following lemma.

Lemma (Riemann hypothesis for Mellin transforms analytic in critical strip with

zeros symmetric with respect to s = 1/2): Let F (s) ∈ F . Then all zeros ρ = σ + it of

F (s) in critical strip have real part σ equal to 1/2.

To prove this lemma, let us introduce continuous increasing parametrization p(q),

0 ≤ q ≤ 1, such that p(0) = 0, lim
q→1−

p(q) = +∞.
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With such parametrization we reparametrize integral (22) yielding

F (s) =

1∫
0

f(p(q))p(q)s−1p′(q)dq (23)

Let us decompose this integral into its real and imaginary parts,

�F (s) =
1∫
0

f(p(q))p(q)x−1 cos(y log p(q))p′(q)dq

.F (s) =
1∫
0

f(p(q))p(q)x−1 sin(y log p(q))p′(q)dq

(24)

with x = �s, y = .s, s = x + iy and using the real logarithm.

Hence, by the mean value theorem, we conclude that for any s from the critical strip

there exist at least one a and b, 0 ≤ a, b ≤ 1, such that Eq. (24) becomes

�F (s) = f(p(a))p(a)x−1 cos(y log p(a))p′(a)

.F (s) = f(p(b))p(b)x−1 sin(y log p(b))p′(b)
(25)

Equation (25) is numerical, meaning we cannot differentiate (25) and expect to yield

any result since equation (25) simply states that for any s there exist some a and b such

that number on the right in (25) equals number on the left in (25). Left and righ hand

side of (25) represent two numbers, not functions.

When we change s = x+iy we consequently change a nad b. We are therefore naturally

inclined to introduce new functions a(x, y) and b(x, y) such that Eq. (25) becomes

�F (s) = f(p(a(x, y)))p(a(x, y))x−1 cos(y log p(a(x, y)))p′(a(x, y))

.F (s) = f(p(b(x, y)))p(b(x, y))x−1 sin(y log p(b(x, y)))p′(b(x, y))
(26)

Equation (26) defines functions a(x, y) and b(x, y) implicitely.

Let us next introduce parametrization p(q) = etan(π(q−1/2)). It satisfies all requirements

parametrization p(q) is required to satisfy. Namely, it is continuous, increasing, p(0) = 0,

lim
q→1−

p(q) = +∞ and it maps interval 0 ≤ q ≤ 1 onto R+. Parametrization p(q) =

etan(π(q−1/2)) is bijective as soon as we restrict values of q to 0 ≤ q ≤ 1.

Let us further inspect properties of parametrization p(q) = etan(π(q−1/2)). We notice

that p′(q) = π etan(π(q−1/2))

cos2(π(q−1/2))
= πp(q)

(
1 + log2(p(q))

)
. We further notice that lim

q→0+
p(q)x−1p′(q) =

π lim
q→0+

ex tan(π(q−1/2))

cos2(π(q−1/2))
= 0 for any 0 < x < 1.

Hence whenever F (s) is in F , by inspecting (26) having lim
q→0+

p(q)x−1p′(q) = 0, p′(q) =

πp(q)
(
1 + log2(p(q))

)
and f(0) = O(1), we conclude that

�F (ρ) = πf(p(0))p(0)σ cos(t log p(0))
(
1 + log2(p(0))

)
= 0

.F (ρ) = πf(p(0))p(0)σ sin(t log p(0))
(
1 + log2(p(0))

)
= 0

(27)
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in zeros ρ = σ + it of function F (s), whenever we set a(σ, t), b(σ, t) = 0. Whenever we

set a(x, y), b(x, y) = 0 in (26) we reproduce result F (s) = 0 as demonstrated in (27).

Therefore we can require a(σ, t), b(σ, t) = 0 for all zeros ρ = σ + it from the critical

strip, as we will.

I find useful to pay some attention to our choice a(σ, t), b(σ, t) = 0. I’d like to stress

the fact that by the mean value theorem points a and b are completely arbitrary as long as

Eq. (26) is satisfied for given s. Hence any a, b ∈ [0, 1] that reproduce result F (s) = 0 as

in Eq. (27) are admissible at any zero ρ. We use this arbitrarity to set a(σ, t), b(σ, t) = 0

for all zeros ρ = σ + it. Once we made our choice for a(σ, t), b(σ, t), we explicitely do not

allow any other value for a(σ, t), b(σ, t) for simple fact that one value for a(σ, t), b(σ, t) is

enough to completely describe function F (s) at any point s = σ + it.

Next we demonstrate that derivative ∂p(a(σ,t))
∂y

exists at zeros ρ = σ + it. To show this,

we suppose that derivative ∂p(a(σ,t))
∂y

indeed exists at zeros ρ = σ + it. We differentiate

(27) formally with respect to y as a product of functions and yield

∂�F (ρ)
∂y

=

= π[f ′(p)pσ cos(t log p)(1 + log2 p)+

+σf(p)pσ−1 cos(t log p)(1 + log2 p)−

−tf(p)pσ−1 sin(t log p)(1 + log2 p)+

+2f(p)pσ−1 cos(t log p) log p]∂p
∂y
−

−πf(p)pσ sin(t log p)(1 + log2 p) log p

(28)

as p→ 0+. Variable p in (28) stands for function p(a(x, y)) at a(σ, t) = 0 as a shorthand

abbreviation.

We notice that lim
p→0+

px
(
1 + log2 p

)
log p = 0 for any 0 < x < 1. We further notice

that by condition C the first summand in square brackets in (28) vanishes.

Thus we are left with

∂�F (ρ)
∂y

=

= πf(p)pσ−1 cos(t log p)
[
(σ − t tan(t log p))

(
1 + log2 p

)
+ 2 log p

]
∂p
∂y

(29)

Let us next suppose that

σ − t tan(t log p) �= 0 (30)

as p→ 0+.

We notice that lim
p→0+

1+log2 p
log p

= 2 lim
p→0+

log p by virtue of the L’Hospital theorem. Hence,

since σ − t tan(t log p) �= 0 we find terms 1 and 2 log p neglectable compared to log2 p as

p→ 0+. Hence Eq. (29) becomes
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∂�F (ρ)
∂y

=

= 2πf(p)pσ−1 cos(t log p)(σ − t tan(t log p)) log2 p∂p
∂y

(31)

At this point we notice that ∂�F (ρ)
∂y

exists. We further notice that product pσ−1 log2 p

is unbounded as p → 0+. Further, f(p) = O(1) as p → 0+. We also supposed that

σ − t tan(t log p) �= 0. Thus Eq. (31) suggests

cos(t log p)
∂p

∂y
= 0 (32)

This is true if either ∂p
∂y

= 0 or if cos(t log p) = 0.

If ∂p
∂y

= 0 we have proven that partial derivative ∂p(a(σ,t))
∂y

exists as p→ 0+.

If cos(t log p) = 0, then sin(t log p) = ±1 and Eq. (31) becomes

∂�F (ρ)
∂y

= ∓2tπf(p)pσ−1 log2 p∂p
∂y

(33)

Since ∂�F (ρ)
∂y

exists, since product pσ−1 log2 p is unbounded as p → 0+ and since

f(p) = O(1) as p→ 0+, Eq. (33) suggests again that ∂p
∂y

= 0.

Therefore if σ − t tan(t log p) �= 0 we conclude that partial derivative ∂p(a(σ,t))
∂y

exists

as p→ 0+.

We next consider assumption

σ − t tan(t log p) = 0 (34)

From (34) we conclude that tan(t log p) = σ/t. Having finite σ and nonvanishing t we

notice that cos(t log p) �= 0.

Consider (34). We know that there is some r > 0, r ∈ R, such that σ − t tan(t log p)

tends to zero as pr as p→ 0+. Hence, factor (σ − t tan(t log p)) log2 p in (29) behaves as

pr log2 p as p→ 0+ under assumption σ − t tan(t log p) = 0.

Therefore we next consider limit lim
p→0+

pr log2 p and find by the use of the L’Hospital

rule that lim
p→0+

pr log2 p = 2
r2 lim

p→0+
pr = 0 for any r > 0.

We should also consider the case with σ − t tan(t log p) tending to zero identically.

Then we find (σ − t tan(t log p)) log2 p = 0 again, identically.

Hence, by putting (σ − t tan(t log p)) log2 p = 0 back to Eq. (29) we conclude

∂�F (ρ)
∂y

= 2πf(p)pσ−1 cos(t log p) log p∂p
∂y

(35)

At this point we again notice that ∂�F (ρ)
∂y

exists. We further notice that product pσ−1 log p

is unbounded as p→ 0+. Further, f(p) = O(1) as p→ 0+ and cos(t log p) �= 0. Thus Eq.

(35) suggests ∂p
∂y

= 0 as p→ 0+.

Therefore we conclude that partial derivative ∂p(a(σ,t))
∂y

exists for every zero ρ = σ + it.
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Next we show that partial derivative ∂p(a(σ,t))
∂x

exists at zeros ρ = σ + it. To show this,

we suppose that derivative ∂p(a(σ,t))
∂x

indeed exists at zeros ρ = σ + it. We differentiate

(27) formally with respect to x as a product of functions and yield

∂�F (ρ)
∂x

=

= π[f ′(p)pσ cos(t log p)(1 + log2 p)+

+σf(p)pσ−1 cos(t log p)(1 + log2 p)−

−tf(p)pσ−1 sin(t log p)(1 + log2 p)+

+2f(p)pσ−1 cos(t log p) log p] ∂p
∂x
−

−πf(p)pσ cos(t log p)(1 + log2 p) log p

(36)

as p → 0+. Variable p in (36) again stands for function p(a(x, y)) at a(σ, t) = 0 as a

shorthand abbreviation.

We notice that lim
p→0+

px
(
1 + log2 p

)
log p = 0 for any 0 < x < 1. We further notice

that by condition C the first summand in square brackets in (36) vanishes.

Thus we are left with

∂�F (ρ)
∂x

=

= πf(p)pσ−1 cos(t log p)
[
(σ − t tan(t log p))

(
1 + log2 p

)
+ 2 log p

]
∂p
∂x

(37)

We notice that Eqs. (29) and (37) are identical as soon as we substitute ∂
∂y
→ ∂

∂x

in (29). Hence, by following steps (29) through (35) with ∂
∂y
→ ∂

∂x
, we find that partial

derivative ∂p(a(σ,t))
∂x

exists for every zero ρ = σ + it.

Hence we conclude that partial derivatives ∂p(a(σ,t))
∂x

and ∂p(a(σ,t))
∂y

exist at any zero

ρ = σ + it.

We would like now to examine the behavior of ratio F (s)/F (1 − s) at zeros s = ρ

and 1 − s = 1 − ρ. This ratio involves ratio p(a(σ, y))/p(a(1− σ, y)) at zeros s = ρ and

1− s = 1− ρ. So let us continue proving lemma by inspecting the following limit,

lim
y→t

p(a(σ, y))

p(a(1− σ, y))
(38)

We first notice that point 1 − σ + it is a zero as soon as σ + it is a zero. This is so

because zeros are located symmetrically with respect to point s = 1/2 as well as with

respect to real axis – and therefore symmetrically with respect to critical line �s = 1/2

as well – for any function F (s) ∈ F . Therefore both p(a(σ, t)) and p(a(1 − σ, t)) equal

zero following discussion of Eq. (27).

Limit (38) may or may not exist. If it does not exist, it does not exist because it is

unbounded, since p(a(σ, t)) being continuous at any zero ρ and since zeros ρ and 1 − ρ

being of the same order, and hence we conclude that if limit (38) does not exist, then

reciprocal limit, namely lim
y→t

p(a(1−σ,y))
p(a(σ,y))

, vanishes, therefore exists.
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Let us first assume that lim
y→t

p(a(σ,y))
p(a(1−σ,y))

exists. Since p(a(σ, t)) = 0 for any zero ρ = σ+it

and since p(a(σ, t)) being continuous at every zero ρ = σ + it, we conclude that we can

employ L’Hospital rule upon limit (38) and yield

lim
y→t

p(a(σ,y))
p(a(1−σ,y))

=

= lim
y→t

∂
∂y

p(a(σ,y))
∂

∂y
p(a(1−σ,y))

(39)

choosing complex number s to approach zero ρ keeping real part x = σ constant.

Limit involving partial derivatives in (39) may be ill defined as well – for instance,

partial derivatives in (39) vanish. However, we are not interested in the exact value of

this limit. All that we require is the formal identity (39) as it is.

We notice that

lim
y→t

p(a(σ, y))σ

p(a(1− σ, y))1−σ
(40)

exists as soon as limit lim
y→t

p(a(σ,y))
p(a(1−σ,y))

exists, for

lim
y→t

p(a(σ,y))σ

p(a(1−σ,y))1−σ = lim
y→t

[
p(a(σ,y))

p(a(1−σ,y))

]σ
1

p(a(1−σ,y))1−2σ exists as soon as σ > 1/2.

Since condition A required zeros to be located symmetrically with respect to point

1/2, and since zeros are distributed symmetrically with respect to real axis, therefore

zeros appear symmetrically with respect to the critical line �s = x = 1/2, therefore

we conclude that we may restrict our analysis to zeros with σ > 1/2 without loss of

generality.

There is of course one more possibility left, namely σ = 1/2, but then the lemma is

proved automatically.

Hence, let us assume σ > 1/2 without loss of generality. We notice that lim
q→0+

p(q)σ = 0

for any 0 < σ < 1. Hence we may employ the L’Hospital rule upon limit lim
y→t

p(a(σ,y))σ

p(a(1−σ,y))1−σ

still choosing complex number s to approach zero ρ keeping real part x = σ constant.

This way,

lim
y→t

p(a(σ,y))σ

p(a(1−σ,y))1−σ =

= σ
1−σ

lim
y→t

p(a(σ,y))σ

p(a(1−σ,y))1−σ

p(a(1−σ,y))
p(a(σ,y))

∂
∂y

p(a(σ,y))
∂

∂y
p(a(1−σ,y))

(41)

Result (39) when employed upon (41) implies

lim
y→t

p(a(σ,y))σ

p(a(1−σ,y))1−σ =

= σ
1−σ

lim
y→t

p(a(σ,y))σ

p(a(1−σ,y))1−σ

(42)

Since limit on the left hand side of (42) is identical to the one on the right hand side of

(42), equation (42) demands σ = 1/2, since (42) leads to
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1 =
σ

1− σ
(43)

We should also consider case with lim
y→t

p(a(1−σ,y))
p(a(σ,y))

= 0. We simply repeat steps (39)

through (43) with ρ and 1 − ρ interchanged and for σ < 1/2. The result is the same,

namely σ = 1/2.

Since we supposed σ �= 1/2 and have arrived at a contradiction, we conclude that

σ = 1/2.

This proves the lemma.

5. Proof of the Riemann Hypothesis

Let us consider integral representation (21). Let us define function χ(s) according to

χ(s) = ζ(s)Γ(s) =

∞∫
0

(
1

ep − 1
− 1

p

)
ps−1dp (44)

We notice that gamma function Γ(s) is finite and nonvanishing in the critical strip.

We hence conclude that functions χ(s) and ζ(s) have common zeros.

Hence chi function zeros ρ = σ + it are situated symmetrically with respect to point

s = 1/2. Thus it satisfies condition A.

Both Γ(s) and ζ(s) are analytic in critical strip. Hence we conclude that χ(s) is

analytic in critical strip.

We also notice that (44) represents a Mellin transform for s in critical strip. Hence

χ(s) satisfies condition B.

Further, pσ
(
1 + log2 p

)
d
dp

(
1

ep−1
− 1

p

)
= pσ

(
1 + log2 p

) (
1
p2 + 1

2
1

1−cosh(p)

)
= 0 as p →

0+ for any 0 < σ < 1, hence for any zero ρ = σ + it of function χ(s). This is so because

by L’Hospital rule p2

2(1−cosh(p))
= −1 as p → 0+. This way we’ve checked the truth of

condition C for χ(s) as defined by (44).

Therefore we conclude that χ(s) belongs to family F .

Function χ(s) being in F , we conclude that nontrivial zeros ρ = σ + it of χ(s), and

therefore the very same nontrivial zeros ρ of ζ(s), satisfy lemma, i.e. σ = 1/2. This

proves the Riemann hypothesis.

6. Introduction to 3-relativity

The invention of 3-relativity was motivated by the fact that Klein-Gordon equation is a

second order differential equation. Since Klein-Gordon equation being co-ordinate repre-

sentation of on-shell relation E2 = p2 + m2, we are linearizing the on-shell relation.

One way to linearize on-shell relation is to do it the Dirac way. Result is Dirac

equation. However, Dirac equation describes fermions only. Therefore, this paper finds
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another way to linearize on-shell condition. This linearization turns to be suitable for

bosons as well as for fermions.

Let us begin by first considering virtual photons. To do so, let us pay attention to

Bremsstrahlung where single particle emits a photon. Let the particle of rest-mass m

move with 3-impulse p and let it emit a photon. Let the particle continue to move with

some 3-impulse q after emission of a photon.

Fig. 1 Bremsstrahlung diagram

The conservation of impulse dictates photon to carry 3-impulse p − q. Such photon

should have energy p−q as measured in natural units. On the other hand, conservation of

energy demands photon to have energy
√

p2 + m2−
√

q2 + m2. Therefore, if energy being

conserved, emitted photon must lack some energy given its impulse. Such photon is called

a virtual photon. The explanation is that virtual particles in general happen to exist only

on account of borrowing the lacking energy from Dirac sea i.e. from quantum vacuum.

Namely, if virtual particle borrows energy ΔE from vacuum, it may exist approximately

in the mean for only Δt ≈ �

ΔE
seconds by the virtue of Heisenberg uncertainty relation.

This is quite a realistic scenario if virtual particle is absorbed by another particle while still

being in existence during period of Δt. Hence, virtual particles exit Feynman diagrams

and re-enter another Feynman diagram within Δt seconds. Virtual particles have to enter

another diagram within Δt seconds – otherwise they would sink back into Dirac sea and

thus violate conservation of 4-impulse.

Let us return back to Bremsstrahlung. Consider a particle emitting a photon. This

photon exits this diagram depicting Bremsstrahlung and is therefore virtual. It is bound

to enter another diagram within Δt seconds. The crucial argument is – in reality, in

experiment, emitted photons do not have to interact for infinitely long time.

Consider this fact – all photons have been emitted by some particle. Every single

photon in Universe once left some diagram. Therefore, all the photons are virtual. Having

all the photons virtual, we are facing the enormously important question – how can

electromagnetic forces be long-ranged? All the experiments done during last 200 years

conform with the fact that photons have infinite range. The magnificent Maxwell theory,

being a reference for every other theory in physics, predicts that photons are long-ranged.

Maxwell theory implied conclusions of special theory of relativity. And yet, the very same

special theory of relativity predicts that photon should be short ranged.

Let us consider photo-effect now. Photo-effect is really Bremsstrahlung with CT
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inversion. Therefore, it is easy to notice that conservation of energy requires incoming

photon to be virtual, whatever the nature of charged particle absorbing it.

The solution suggested by contemporary QFT to this problem is to require photo-

effect to be followed by Bremsstrahlung, Fig. 2.

Fig. 2 Photo-effect followed by Bremsstrahlung

This way, one can blame all the virtuality on electron, and not on photons.

The way out of this puzzle was to claim the existence of real photons. These are the

ones that do not enter any diagram and are free. However, when we measure a real photon,

the very act of measuring the real photon is in fact interaction of a real photon with

apparatus. Hence, real photon enters a diagram at the moment of measuring. Entering

the diagram, it has to be virtual in order not to violate conservation of energy. So, it seems

that there are no real photons. If there were real photons, then the electrons in apparatus

should be virtual for a while. Virtual particles are undetectable per definitionem. The

question arising is – what are we measuring, then? And what is it that enables measuring?

Certainly not the undetectable virtual apparatus.

The situation is quite different if the mediator is massive. All the relativistic cal-

culations still demand massive particle to be virtual in order to have energy conserved,

but only in Bremsstrahlung as depicted in Fig. 1. The difference with respect to pho-

tons is that massive mediators are short-ranged. Massive mediators cannot originate

from Bremsstrahlung depicted in Fig. 2 because such mediators are long-ranged since

being real and not virtual. Therefore, massive mediators are short-ranged only with

Bremsstrahlung as in Fig. 1.

These arguments are compelling enough to motivate us to find the answer to this

puzzle – the puzzle of long-ranged virtual photons. This paper shows that there is another

way to define special theory of relativity. We define special theory of relativity in 3-

dimensional euclidean space, in contrast to 4-dimensional Minkowski space-time. This

3-relativity predicts the same results as 4-relativity as long as there are no interactions.

This may seem trivial. However, the difference between 3-relativity and 4-relativity shows

when considering interactions – and therefore when considering virtual particles. The

results of 3-relativity show that photons do not violate energy conservation and indeed

are long-ranged. This result does not stand for massive mediators, so the theory of strong
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and weak interactions stands, as viewed in 3-relativity. So let us introduce 3-relativity.

7. 3-relativity

Consider following manipulation

E2 = p2 + m2 = (|p|+ im)(|p| − im) (45)

This factorization suggests that energy E should be rewritten as

E = |p|+ im (46)

If we choose to have p,m ∈ R, then energy E in Eq. (46) is complex and Eq. (1)

becomes

|E|2 = EĒ = p2 + m2 = (|p|+ im)(|p| − im) (47)

Suppose that we could do this for each component of 3-impulse p. Let indices i, j, k, l =

1, 2, 3 label spatial components of a vector. Let us define Eq. (44) to be

Ek = |pk|+ imk (48)

with Ek denoting the k-component of complex energy 3-vector E . This equation is lin-

earization of Klein-Gordon equation.

Let vectors p, E and m be spanned by quantities qk that satisfy {qk, ql} = 2δkl. For

instance, quantities qk may be cartesian unit vectors ei. So the energy 3-vector as defined

in Eq. (48) is

qk(Ek − |pk| − imk) = 0 (49)

assuming summation over dummy index k = 1, 2, 3. This equation turns into Dirac

equation for qk = σk with σk being Pauli matrices. It also turns into an equation similar

to Dirac equation, but describing not fermions but bosons, as soon as we choose mutually

commuting vectors qk, such that [qk, ql] = 0. We will discuss this in a short while. Let

us for the moment mimic Dirac equation and suppose that operator for conjugate wave

function similar to one given in Eq. (49) is

ql(Ēl − |pl|+ iml) = 0 (50)

with {qk, ql} = 2δkl.

Multiply Eq. (50) by Eq. (49) from the left, multiply Eq. (49) by Eq. (50) from the

right, and sum these two products together. The result is

1

2
{qk, ql}(Ek − |pk| − imk)(Ēl − |pl|+ iml) = 0 (51)

where we used the fact that Ek, Ēk, pk and mk all mutually commute. Since {qk, ql} = 2δkl

we conclude from Eq. (51)
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(Ek − |pk| − imk)(Ēk − |pk|+ imk) = 0 (52)

with summation over dummy index k. When multiplied through, Eq. (52) results in

ĒkEk − pkpk −m2 = 0 (53)

with summation over dummy k assumed and with definition

mkmk = m2 (54)

with summation over dummy k.

We notice that Eq. (53) represents on-shell relation

E2 − pkpk −m2 = 0 (55)

with

ĒkEk = |E|2 = E2 (56)

with E denoting energy as defined in Einstein’s 4-relativity.

So we conclude that we found another way to define special theory of relativity. The

advantage of this approach is that we are able to express energy-impulse relation in linear

form now, Eq. (48). In Einstein’s formulation there was only one energy E and three

impulses pk and any statement about energy E had impact on all of impulses pk. Now,

we have defined a portion of energy Ek for each impulse component pk. This allows more

detailed analysis of energy-impulse relationship than the use of 4-impulse. On the other

hand, we have concealed conserved stationary quantities – 4-energy E and rest mass m,

and thus have lost explicit form of these constants of motion.

We can linearize not only the energy-impulse on-shell relation, but also the time-space

on-shell relation – the metric. For as soon as we define complex time 3-vector Tk and

substitute Ek → Tk and pk → xk and mk → τk with τkτk = τ 2 in Eqs. (48) through (53)

with τ being proper time, we find that

Tk = |xk|+ iτk (57)

leads to

TkT̄k = xkxk + τ 2 (58)

with summation over dummy index k. Eq. (58) is the metric 4-element as soon as we

define

TkT̄k = |T |2 = t2 (59)

with t denoting time as defined in Einstein’s 4-relativity.
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We notice that metric (58) is invariant to any transformation of 3-time Tk and 3-space

xk as long as Eq. (57) stands invariant. Any such transformaion is Lorentz transformation

for 3-relativity.

It is interesting to notice appearance of absolute values |p| and |x| in Eqs. (48)

and (57) describing relativistic particle in 3-relativity, as well as in Eq. (11) describing

quantum chaotic oscillator.

8. Virtual Particles in 3-relativity

I would like to show that there is a difference between 3-relativity and 4-relativity when

describing a virtual photon.

Let us for simplicity use only one spatial dimension, say x. Consider a particle of

impulse pi and rest mass m scattering with outgoing impulse pf whilst emitting a photon

of impulse f .

In 4-relativity impulses balance out according to

pi = pf + f (60)

Energy of incoming particle is
√

p2
i + m2, energy of outgoing particle is

√
p2

f + m2

and energy of a photon is f . Energy balance therefore reads√
p2

i + m2 =
√

p2
f + m2 + f (61)

Eqs. (60) and (61) are not solvable simultaneously, so the photon must tunnel through

the Dirac sea borrowing extra energy ε from the vacuum according to uncertainty principle

εΔt ≈ � (62)

The tunneling allows photon to be in existence only for Δt seconds. Such virtual photon

can traverse only a distance Δx = cΔt.

This scenario is unphysical. This mechanism of production of a virtual photon is not

realistic because electromagnetic forces are of infinite range and are not limited to ranges

of Δx.

Let us describe this situation in 3-relativity. Impulses balance as in Eq. (60). Energy

of an incoming particle is |pi|+ im. Energy of an outgoing particle is |pf |+ im. Energy

of a photon is |f |. Hence,

|pi|+ im = |pf |+ im + |f | (63)

Eqs. (60) and (63) are actually identities as soon as sign(pi) = sign(pf ) = sign(f).

We notice that photon is no longer virtual. Real photon now has infinite range as it

should.

The situation changes if emitted particle being massive. Let the emitted particle have

impulse f and mass n. Then energy should balance according to
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|pi|+ im = |pf |+ im + |f |+ in (64)

Eqs. (60) and (64) are not solvable simultaneously because of extra mass in, so the

emitted massive particle has to be virtual thus being short-ranged. Since in Standard

model massive mediators should be short-ranged, we conclude that 3-relativity predicts

physically acceptable results.

9. Chaotic Oscillator and Gravity

Consider a particle of rest mass m in potential V (x). Its energy H in 3-relativity can be

written as

H = p + im + V (x) (65)

Chaotic oscillator is also a one-particle system in some potential V (x) and is com-

pletely described given Hamiltonian H = px. Product px already contains all information

on potential V (x), although potential V (x) does not appear in it explicitely.

Hamiltonian H = px is not 3-relativistic because it does not take rest mass energy

into account. It’s 3-relativistic form is

H = px + im (66)

This represents particle’s energy and is constant of motion. Hamiltonian H = px+im

obviously has complex eigenvalues and is no longer hermitean. Since rest mass m being

constant, quantity

K ≡ H − im = px (67)

is also a constant of motion for a given orbit, and is represented by hermitean operator.

Equations (65) and (66) say that

px = p + V (x) (68)

Potential V (x) is therefore

V (x) = px− p = K−K

x
(69)

This is one-dimensional gravitational potential plus some constant potential K being

dependent on rest mass m and is the kinetic part of energy assigned to a given orbit.

Since any Hamiltonian can be split into a sum of Hamiltonians, we are free to interpret

Eq. (66) as radial part of energy of a particle in potential V (r), identifying x with

radial distance r in spherical co-ordinates. Thus, potential in which a particle is moving

chaotically as expressed by Hamiltonian’s kinetic radial part Hr = K = prr is

V (r) = −K

r
(70)

up to constant potential K. This is gravitational potential. Therefore, gravity makes

particle move chaotically following unstable orbits as dictated by Hamiltonian Hr = prr.
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This is quite interesting conclusion, since it links gravity with Riemann zeta function zeros

and chaos. Constant K is not a global constant, but is constant only along given orbit.

This shows that this result cannot be the complete information about the given system.

The point we wish to stress here is not the complete theory, but rather single interesting

detail about gravity and chaotic oscillator. Complete treatment demands more thorough

analysis, of course.

10. Conclusions

This paper showed that chaotic system described by Hamiltonian H = px has imaginary

parts of Riemann zeta function nontrivial zeros as eigenenergies, although there is still

left to prove that spectrum of H consists of all of the Riemann zeta function nontrivial

zeros. By proving rigorously the Riemann hypothesis by analytic methods, this paper

shows that Hamiltonian H = px is very likely the Hamiltonian Hilbert and Polya wrote

about, namely the Hamiltonian that might serve to prove the Riemann hypothesis without

purely analytic and number-theoretical methods. We further introduced reformulation of

special theory of relativity by describing it over three-dimensional space rather than in

Minkowski four-dimensional space-time. In this relativistic representation, the potential

driving a particle to move chaoticaly with energy H = px proves to behave as gravitational

potential, thus linking theory of chaos to gravity and to Riemann zeta function nontrivial

zeros.
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Abstract: In astronomy light emission is characterized by a frequency ω0/2π, a redshift z

(sometimes a blueshift), a FWHM (Full Width Half Maximum) and an EW (Equivalent Width).
ω0 relates to the nature of the concerned atom or molecule, z allows to determine the speed and
the distance of the body through the Hubble law, FWHM measures the wave spectral width,
and EW defines a kind of SNR (Signal-to-Noise Ratio). In this paper, we show that Gaussian
time delays on pure waves can theoretically explain the width of emission lines, any redshift
and a floor noise which can be matched to any EW.
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1. Introduction

A star spectrogram shows a continuum with emission and absorption lines following the

composition of the star and of the medium crossed by the light. A particular line is

defined by a wavelength λ0 (or a frequency f0 = c/λ0 = ω0/2π), a redshift parameter

z (more rarely it is a blueshift), a FWHM (Full Width Half Maximum) and an EW

(Equivalent Width). Roughly speaking, the quotient EW/FWHM is like the quotient

between the height of the line and the value of the continuum. Then, it is similar to a

SNR (Signal-to-Noise Ratio) according to signal theory.

We show in this paper that the line in a spectrogram can be modelled by two random

processes A and B, the first one for the change from a pure monochromatic wave to a wave

with a given bandwidth, and the second for the propagation between the transmitter body

to the receiver. The last one will explain a part of the redshift and the continuum. Both

∗ bernard.lacaze@tesa.prd.fr
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processes refer to media with very different physical properties, for the temperatures, the

pressures, densities, electrical or magnetic fields. The first process is linked to a very

turbulent medium for instance the neighbourood or the interior of a star, and the second

models the transmitter-receiver way, a very long path, which can cross perturbed regions.

Then, the model takes into account the real random processes A = {A (t) , t ∈ R}
and B = {B (t) , t ∈ R} , which define the transmitted process Ze = {Ze (t) , t ∈ R} and

the observed process Zr = {Zr (t) , t ∈ R} where

Ze (t) = eiω0(t−A(t)) Zr (t) = Ze (t− B (t)) (1)

f0 = ω0/2π is the emitted frequency. We assume that the processes A,B are stationary

Gaussian processes, zero-mean (the mean values are insignificant), independent, with reg-

ular power spectra sA (ω) , sB (ω) , standard deviations σA, σB and autocorrelation func-

tions

KA (τ) = E [A (t) A (t− τ)] , KB (τ) = E [B (t) B (t− τ)]

such as (for A) [2], [11]⎧⎪⎨⎪⎩KA (τ) = σ2
AρA (τ) =

∫∞
−∞ eiωτsA (ω) dω

ρA (τ) = 1− τ2

2γ2
A

+ o (τ 2)
(2)

where E[..] is for the mathematical expectation (or ensemble mean). The regularity of

the correlation functions ρA (τ) and ρB (τ) near the origin point implies the existence

of the m.s (mean-square) derivatives A′ (t) , B′ (t) . Furthermore, the processes A′,B′ are

Gaussian [2]. We note that four parameters are used, σA, σB, γA, γB, but we will see that

only orders of magnitude are necessary to characterize the processes.

Random processes like Ze and Zr were theoretically studied in [5], and used to model

varied schemes of propagation, in the acoustics or in the electromagnetic field, from audio-

frequencies to visible frequencies [6], [7], [8], [9], [10], and particularly to fit varied shapes

of power spectra. But, in the cited papers, only one random process was sufficient to fit

the physical studied problems, and not two as in the present paper.

The pure monochromatic wave eiω0t summarizes the emission of a large number of

particles of the same kind with different locations and celerities. Most authors give the

consequences of this synthetic formula without references to the physical reasons which

lead to it. The model is justified because the consequences agree with properties which

we have to explain. In this paper, the studied models are not justified by considerations

about the particles which create the wave, or by properties of the crossed medium, but a

posteriori by the adequacy of the observed spectra. Moreover, these models highlight the

obvious need of a separation in two consecutive operations, the first one for the emitted

wave (a widened version of eiω0t), the second one for the propagation. Both used processes

A and B have the same properties, with a sufficient flexibility which allow to explain

what is observed in devices. As explained above, they are able to explain many other

phenomena.
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In the next section, we give the properties of randomly delayed processes. After

that, we will explain the properties to give to A and B in order to obey the following

properties. Ze is a widening of the line at ω0 in the reference fixed to the transmitter.

The propagation of this wave ends in Zr, which is a version redshifted of Ze, accompanied

by a continuum. When both systems are in relative motion, the usual Doppler redshift

(or blueshift) has to be added.

2. Clock Changes Properties

1) Assume that the independent processes C = {C (t) , t ∈ R} ,Z = {Z (t) , t ∈ R} are

characterized by (C is a real process)⎧⎪⎨⎪⎩KZ (τ) = σ2
ZρZ (τ) =

∫∞
−∞ eiωτsZ (ω)dω

ψC (ω) = E
[
e−iωC(t)

]
φC (τ, ω) = E

[
e−iω[C(t)−C(t−τ)]

] (3)

KZ (τ) =E[Z (t)Z∗ (t− τ)] is the autocorrelation function, and the superscript ∗ is for

the complex conjugate. sZ (ω) is the spectral density of Z, and possibly defined in a

distribution sense (when pure spectral lines appear). Actually, ψC (ω) and φC (τ, ω) are

the characteristic functions (in the probability sense) of the random variables (r.v) C (t)

and C (t)−C (t− τ) . They define perfectly the probability laws of these r.v. Their shape

implies a stationarity for C stronger than the second order (i.e. the stationarity of the

correlation functions).

If we define the new process U = {U (t) , t ∈ R} by

U (t) = Z (t− C (t))

we have the decomposition U = G + V where G and V are stationary, uncorrelated and

(see the appendix and [5])⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U (t) = G (t) + V (t)

sG (ω) =
[
|ψC |2 sZ

]
(ω)

KV (τ) =
∫∞
−∞ eiωτ

[
φC (τ, ω)− |ψC (ω)|2

]
sZ (ω) dω.

(4)

The process G is defined as the output of a LIF (Linear Invariant Filter) with input Z and

with complex gain (or tranfer function or spectral response) ψC (ω) . The second equality

is a consequence of the wellknown Wiener-Lee theorem [11]. V and Z are uncorrelated

and then so are V and G. The last equality of (4) allows to compute sV (ω) by a Fourier

transform inversion. The equations in (4) are true even if Z is a pure monochromatic

line. In this case, G is a weakened and delayed version of Z. In all cases, V will have a

finite spectral density when (rapidly enough)

lim
τ→∞

φC (τ, ω) = |ψC (ω)|2 .
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Practically, this means that the r.v. C (t) and C (t− τ) become independent when the lag

τ is large enough. The random delay C leads to a linear filtering G of Z, and creates an

uncorrelated “noise” V. The spectra of both components and the relative powers depend

on the probability laws defining C, through the functions ψC (ω) and φC (τ, ω). We note

that the sum of the powers of G and V remains equal to KZ (0), the power of Z. Then,

the transformation of Z in U is done at constant power.

2) Now, assume that C is a (derivable) Gaussian process. In this case, we have [2]⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψC (ω) = exp
[
−imCω − (ωσC)2 /2

]
φC (τ, ω) = exp [−ω2σ2

C (1− ρC (τ))]

σ2
CρC (τ) = Cov [C (t) , C (t− τ)]

ρC (τ) = 1− τ2

2γ2
C

+ o (τ 2)

(5)

mC , σC , ρC (τ) are the mean, the standard deviation and the correlation coefficient of C,

and γC measures the celerity of variations of C (t) because

E
[
C ′2 (t)

]
=

[
σC

γC

]2

(6)

where C ′ (t) is the m.s (mean-square) derivative of C (t) . We apply these results to the

processes Ze and Zr defined by (1) .

3. The Process Ze

3.1 Decomposition of Ze

The transmitted wave Ze is defined in (1) by Ze (t) = eiω0(t−A(t)). The decomposition in

the section 2 can be written as

Ze = Ge + Ve

From (4) and (5) , Ge is a pure monochromatic wave with (δ (ω) is the “Dirac function”)

sGe (ω) = e−ω2
0σ2

Aδ (ω − ω0) .

To eliminate Ge, which is purely monochromatic, it suffices that the exponent ω0σA will

be large enough (ω0 is around 3.1015s−1 for the visible light). In the same time, it is

not difficult to prove that the Ve−spectrum can be confused with a Gaussian (see for

instance [8], [10]) with standard deviation ω0σA/γA :

sVe (ω) � γA

ω0σA

√
2π

exp

[
−1

2

(
γA

ω0σA

)2

(ω − ω0)
2

]
. (7)

Then, it is possible to give values to the parameters σA, γA so that Ze will be confused

with a Gaussian line at ω0 with an arbitrary width σZe = ω0σA/γA.
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It is possible to adopt an opposite strategy, giving a small value to ω0σA and a large

value to ω0σA/γA (firstly fiting σA and secondly γA). As a result, the pure monochromatic

line would be retained, surrounding a process with a spectrum as flat as we want (even

if the Gaussian character is questionable for small ω0σA).

Either way, from (4) and (5) , we can deduce KVe (τ) =E[Ve (t)V ∗
e (t− τ)]⎧⎪⎨⎪⎩KVe (τ) = eiω0τ−ω2

0σ2
A

[
eω2

0σ2
AρA(τ) − 1

]
ωVe = ω0 σVe = ω0σA

γA

(
1− e−ω2

0σ2
A

)−1/2

where ωVe is the gravity centre of sVe (ω) , and σVe the half-width (i.e. the standard

deviation of the probability law proportional to sVe (ω)). Clearly, ω0σA rules the behavior

of the pure line Ge, and ω0σA/γA the spreading of the continuum Ve.

3.2 Example

When lines are not too large, a Gaussian power spectrum in f = ω/2π (in frequency) is

also Gaussian in λ = c/f (in wavelength). Of course, it is an approximation. The relation

which links the half-widths σ (the standard deviation of the normalized Gaussian) in ω,

and σ′ in λ, is

σ′ =
λ2

0

2πc
σ

where λ0 is the wavelength (the centre of its power spectrum). Furthermore, in the Gaus-

sian case, the FWHM is close to 2.35 times the standard deviation, because exp[−x2/2] =

1/2⇐⇒ x = 1.177.

For the Balmer Hα, λ0 = 6563Å, ω0 = 2872.1012s−1. A Gaussian ray with a FWHM

of 10Å (in λ) is equivalent to a standard deviation of 19.1011s−1 (in ω). If the pure line

Ge has disappeared, we have to verify, from (7)

ω0σA

γA

= 19.1011s−1

or equivalently
σA

γA
� 65.10−5.

The pure monochromatic line has disappeared for instance when ω0σA � 3, which ends

in γA � 16.10−13s, σA � 10−15s (half a period of Hα). For these values, the Gaussian

part Ve holds more than 99.98% of the power of Ze. The power of Ve in an interval of

width 0.2Å around λ0 (where is Ge), is close to 0.02, which has to be compared with

0.00012, the power of Ge. Clearly, Ge is flooded in Ve and cannot be seen. The contrast

between both powers increases with σA, because exp[−ω2
0σ

2
A] decreases rapidly. When

A is a baseband process (its power spectrum is around the origin), 2/γA � 13.1011s−1

is an order of magnitude for the frequency bound of A. Then, A (t) has slow variations

compared with the wave Ze (t) .
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The situation is very different when ω0σA is smaller. For instance, when ω0σA = 1,

the powers of Ge and Ve are equal to 0.37 and 0.63. For γA < 14.10−15s, and assuming a

Gaussian for sVe (ω) , the power of Ve in an interval of 2.2Å around ω0 is less than 0.24,

and then the pure line will appear above the continuum.

4. The Process Zr

4.1 Decomposition of Zr

The received wave Zr is defined by Zr (t) = Ze (t−B (t)). We assume that Ze has a

Gaussian spectrum profile of parameter σZe = ω0σA/γA (sZe (ω) is a Gaussian probability

density with a standard deviation σZe such as FWHM(Ze) = 2.35σZe). Equivalently, we

assume that, in the decomposition Ze = Ge + Ve, the pure monochromatic part Ge has

disappeared, and Ze is identified with Ve (see the section 3 above). B is a Gaussian

process, with parameters mB (which could be a propagation mean-time and which is

useless), σB (which rules the range of B), and γB (which gives insights for the celerity of

variations of B). Following the developments in the section 2, we write

Zr = Gr + Vr

and we study separately both processes Gr and Vr.

We have to show that B can be defined so that Gr becomes a redshifted version

of Ze and so that Vr represents a part of the continuum which accompanies the line

Ze. Vr results from the degradations due to the very long trajectory of Ze. We will see

that this component contains the most part of the power, but on a very large frequency

band, which likely contains other emitted lines than Ze. Consequently and reciprocally,

the continuum is likely constituted by the sum of several processes like Vr, due to the

deteriorations of the spectral lines.

4.2 The Redshift

From (4), we have

sGr (ω) =
[
|ψB|2 sZe

]
(ω) (8)

where, using (5) and taking the spectra of Ze and Ve to be the same⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψB (ω) = exp

[
−imBω − (ωσB)2 /2

]
sZe (ω) = 1

σZe

√
2π

exp
[
− (ω − ω0)

2 /2σ2
Ze

]
σZe = ω0σA/γA.

(9)
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(8) and (9) lead to⎧⎪⎨⎪⎩ sGr (ω) = 1
σZe

√
2π

exp
[
−ωGrω0σ

2
B − (ω − ωGr)

2 /2σ2
Gr

]
ωGr = ω0/

(
1 + 2σ2

Ze
σ2

B

)
σGr = σZe/

√
1 + 2σ2

Ze
σ2

B

(10)

where ωGr and σGr are the centre of gravity (the mean) and the standard deviation (the

half-width) of the probability density proportional to sGr (ω) . We see that the power

spectrum sGr (ω) of Gr is still Gaussian but it is a weakened, shifted and narrowed

version of sZe (ω). Because ωGr < ω0, Gr appears as a redshifted version of Ze with

parameter

z =
λGr − λ0

λ0

=
ω0 − ωGr

ωGr

= 2σ2
Ze

σ2
B. (11)

Theoretically, z can reach any value, fitting the value(s) of σZe and/or σB. But, we know

that Gr is the result of a LIF with input Ze and complex gain ψB (ω) (see the section 2).

The filter highlights the part of sZe (ω) around ωGr . The accuracy of the formulae in (10)

and (11) depends on the accuracy of (9) . Obviously, the reliability of these formulae

decreases when ω0− ωGr increases, as the confidence with the formula (9) giving sZe (ω)

for large values of |ω − ωGr |. Today, large deviations are a part of the probability calculus

which is particularly studied. This means that people gives a great importance to places

of very weak probabilites. Nevertheless, it seems reasonable to only keep the formula

(11) for low values of z. Even if the Gaussian character is questionable for the tails of

distributions, it is obvious that these tails exist. They can be raised, for instance using a

Cauchy law instead of a Gaussian law. Consequently, we can think that random delays

allow large z, but with a value different of (11) .

Because σGr < σZe, the wave is narrowed. For low values of z, we have

σGr − σZe

σZe

� −z

2

which seems beyond measurements. The weakening of the wave is mainly given in (10)

by the coefficient

exp
[
−ωGrω0σ

2
B

]
= exp

[
− ω2

0σ
2
B

1 + 2σ2
Ze

σ2
B

]
= exp

[
−ω2

0σ
2
B

1 + z

]
. (12)

For small z, it is a function strongly decreasing with σB. If B is really a propagation time,

it is reasonable to assume that σB varies linearly with the square root of the distance (it

is the application of the Beer-Lambert law).

It is convenient to characterize the line Ze by its relative half-width μ = σZe/ω0. μ

measures the purity of the wave (μ = 0 is for the ideal pure monochromatic wave). If we

write (12) as

exp
[
−ωGrω0σ

2
B

]
= exp

[
− 1

2μ2

z

1 + z

]
(13)

we see that too large values of z/μ2 seem suppress Gr which is not what we look for.

But, the power of Gr is compared to 1, the power of Ze. If we start from a larger power
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for Ze, it can be possible to give to Gr a non negligible power even if the weakening is

strong. Moreover, what is important is the relative distribution of the powers of both

components Gr and Vr. A weak power can be viewed if it is in the frequency band of the

observer, and a strong power can be ignored in the opposite case, or when distributed

over a too large frequency band. Finally, the power PGr of Gr is obtained by integrating

sGr (ω) on R. We find

PGr =
1√

1 + z
exp

[
− 1

2μ2

z

1 + z

]
. (14)

4.3 Example

Let us consider a line Hα (λ0 = 6563Å, ω0 = 2872.1012s−1). A FWHM=16Å corresponds

to σZe = 3.1012s−1 and μ = 10−3. The following table gives corresponding values of z,

10 log PGr (PGr in dB) and σB (in 10−16s).⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z 10−6 5.10−6 10−5 5.10−5 10−4 5.10−4 10−3

10 log PGr −2.2 −11 −22 −110 −220 −1100 −2200

σB 2.4 5.3 7.5 17 24 53 75

The extreme values of z correspond to celerities of 0.3km.s−1 and 300km.s−1. We remark

that 22.10−16s is the period of the wave, and corresponds to the value of σB for z =

10−4. Then, small random variations of transit times suffice for explaining non-Doppler

redshifts. In dB, PGr is a linear function of z, and is related to a unit power of PZe.

The relative half-width of the wave μ = σZe/ω0 can be larger than 10−3. Values in

the order of 0.005 are common for Wolf-Rayet stars [4], and 0.01 for quasars [12]. In the

last case, the table above is still correct, multiplying the values of z by 100. Then, it is

possible to construct non-Doppler redshifts, with an appreciable power PGr (compared

to 1). For instance we have together

μ = 0.01, z = 10−3, PGr = 0.0063

where the value of z corresponds to a celerity of 300km.s−1.

4.4 The Blueshift

The power spectrum of the second part Vr of Zr is defined by (using (4) )

KVr (τ) =

∫ ∞

−∞
eiωτ

[
φB (τ, ω)− |ψB (ω)|2

]
sZe (ω) dω.

where KVr (τ) =E[Vr (t)V ∗
r (t− τ)] . Because the Gaussian character of B, we have (see

(5)) ⎧⎪⎨⎪⎩KVr (τ) =
∫∞
−∞ eiωτ−σ2

Bω2
[
eσ2

Bω2ρB(τ) − 1
]
sZe (ω) dω

sVr (ω) = 1
2π

∫∞
−∞KVr (τ) e−iωτdτ.

(15)
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If ρB (τ) is known, a Fourier tranform inversion gives the spectrum sVr (ω). For large

enough values of ω0σB, this spectrum can be identified with a Gaussian [8], [10]. In all

cases, we have (using Fourier transform derivatives)⎧⎪⎨⎪⎩ωVr = −i
K′

Vr
(0)

KVr (0)

σ2
Vr

= −K′′
Vr

(0)

KVr (0)
− ω2

Vr

where ωVr is the gravity centre and σVr the half-width of sVr (ω) (i.e. the standard

deviation of the probability law proportional to sVr (ω)). Elementary algebra leads to

(μ = σZe/ω0 is the relative half-width of Ze)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ωVr = ω0

1−PGr (1+z)−1

1−PGr
, PGr = 1√

1+z
exp

[
− 1

2μ2
z

1+z

]
σ2

Vr
= 1+μ2

1−PGr

(
ω0σB

γB

)2

+ R

R =
ω2

0

1−PGr

[
1 + μ2 − PGr

1+z

(
1

1+z
+ μ2

)]
− ω2

Vr

(16)

PGr =KGr (0) = 1−KVr (0) is the power of Gr and PVr = 1 − PGr is the power of Vr.

From the first equality of (16), we deduce that ωVr > ω0 and then Vr is blueshifted by

the quantity

z′ =
ω0 − ωVr

ωVr

= −PGr

z

1 + z
(17)

The blueshift parameter z′ is negligible when z and PGr are together small. If PGr and PVr

are in the same order of magnitude, z and z′ have the same property, and the following

relation links the gravity centres

ωGrPGe + ωVr (1− PGr) = ω0.

The term R in (16) is positive because it does not depend on γB which is a quantity as

large as we want. Moreover, for small values of z, PGr , μ in front of 1, we have

σ2
Vr
∼=
(

ω0σB

γB

)2

+ σ2
Ze

. (18)

4.5 The SNR

γB does not intervene in the properties of Gr, and allows to give arbitrary values to σVr

(above σZe). We know that γB is related to the celerity of the variations of B by (see the

section 2)

E
[
B′2 (t)

]
=

[
σB

γB

]2

.

which can be adjusted to any value of σVr above σZe . In particular, small values of γB

lead to large values of σVr , so that Vr will have a very flat spectrum. Whatever the

weakness of Gr (but its half-width is smaller than this of Ze), it is possible to take γB
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so that sGr (ωGr) > ksVr (ωGr) , for any k > 0. In this circumstance, Gr will appear as a

line which dominates Vr, and even when the ratio of the powers PGr/PVr is very small.

To measure the visibility of Gr, we can define a Signal-to-Noise Ratio (SNR) by

SNR =
sGr (ωGr)

sVr (ωGr)

For small γB (to have large σVr), we can take sVr (ωGr) and sVr (ωVr) to be the same, and

then, for Gaussian sVr (ω) and small PGr , z, in front of 1

SNR � σB

γBμ
PGr . (19)

This formula is for highlighting a redshifted line Gr in a surrounding “noise” Vr. To

do this, we see that it is possible to fit the parameters of the wave Ze and B to any

wanted value of SNR. The comparison between both spectra can be made through the

Equivalent Width (EW). Approximately, we can admit that EW/FWHM≈SNR when

sVr (ω) has slow variations in the neighbourhood of ωGr . Of course, it is possible that

other processes, linked to other spectral lines or not, are added to Vr, which will change

the value of the SNR.

To observe a redshift, a sufficient SNR is required to highlight Gr with respect to

Vr. The parameter γB allows to perform this operation. The opposite operation was

done in the section 3, where Ve was highlighted and Ge neglected, to give a width to the

transmitted wave. But the media which produce the wave and which propagate it have

opposite properties.

4.6 Example

Assume that the emitted wave Ze is the CIV at λ0 =5808Å (ω0 = 3245.1012s−1) with

FWHM= 70Å, or μ = 0.005 [4]. When z = 10−4 (equivalent to 30km.s−1), we have

PGr = 0.135, PVr = 0.865, z′ = −13.10−6 (equivalent to -4km.s−1). Because PGr/μ = 27,

it suffices to take σB/γB larger than few 0.05 to have SNR>1, and then to highlight Gr.

But, for small values of σB/γB, the spectra of Gr and Vr will be blended so that the

redshift (and the blueshift) will be not distinguishable. For z = 3.10−4 (equivalent to

100km.s−1), PGr = 0.0025, which is a noticeable value, though PVr � 1. Then, it seems

possible to widen Vr so that Gr will be seen. Values in the order of z = 10−3 (equivalent

to 300km.s−1) seem difficult to reach, because the corresponding value PGr = 2.10−9

is very small, but any value of z is theoretically possible though the formula (11) is

questionable, because it depends on distribution tails. The power is in Vr and can be

spread or not, following the value of the parameter γB. So, we can highlight the line or

not. If not, the random delay B will transform the line in a floor noise (the lack of rays

is a particularity of the BL-Lac. objects [1]). This example is favourable to the theory

developed above, but the FWHM value is well adapted. In most cases, we will encounter

lower values of FWHM, which are less favourable to high redshifts. Moreover, this source

of spectral changes has to be added or subtracted to other phenomena.
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5. Remarks

1) We may be interested in probability distributions of the processes Ze,Zr... The Gaus-

sian character of A can be used to compute the laws. Moreover, we know that ω0A (t)

(modulo 2π) is uniformly distributed when ω0σA is large enough (few units). If we want

to tend to a Gaussian character, it suffices to consider a large enough sum of indepen-

dent waves, so that a version of the central limit theorem could be applied. Indeed, the

spectral properties which are developed in this paper are not modified.

2) Zr can be written in the shape

Zr (t) = exp [iω0 {t−B (t)− A (t− B (t))}]

which is different from exp[iω0 (t− A (t)− B (t))] . This last process has the properties

of Ze and not of Zr. It is a mixing of a pure spectral line at ω0, added to a processs with

a continuous spectrum centered at the same frequency. As soon noted, Zr models the

physical result of two stages, the first one which starts from a pure wave and the second

which modifies the result (and which may be due to a propagation). For having a realistic

model, it seems that the parameters of the delays A and B have to be chosen in different

ranges. For example, ω0σA has to be larger than few units, to eradicate the pure line,

but ω0σA/γA gives the width of the wave which propagates (for instance corresponding to

some Å). If the model has to end in a redshift, ω0σAσB defines its parameter z. The last

parameter γB rules the signal-to-noise ratio, which has a meaning close to an equivalent

width.

Moreover, it is not difficult to study non-Gaussian clock changes [5], which may lead

to very different results. For instance, it is possible to multiply the number of pure rays,

using discrete probability laws (like in the Stark and Zeeman effects).

3) Weakenings and redshifts can be explained directly from random delays on pro-

cesses with continuous spectra [10], but other models can be built [13]. The model studied

in this paper is able to explain various spectra of electromagnetic waves, encountered in

laser propagation, radar backscattering, HF propagation, or in acoustics [6], [7], [8], [9].

In most cases, they have a common property coming from the application of the Beer-

Lambert law. As a consequence, the characteristic function ψ (ω) of the delay has to

belong to the class of infinitely divisible distributions [3].

Conclusion

This paper addresses the problem of modelling the behavior of a pure monochromatic

line from the emission by an atom (for instance) up to its reception in some apparatus,

taking into account changes due to firstly the medium surrounding the emitter, and the

medium of propagation. Starting from a pure monochromatic wave eiω0t, a Gaussian

delay A allows to create a wave Ze with an arbitrary spectral width, which value de-

pends on the standard deviation σA/γA of A′, the derivative of A. Actually, we have
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FWHM(Ze) = 2.35ω0σA/γA, when ω0σA is large enough to suppress the pure part of the

wave. The propagation of Ze is modelled by a second Gaussian delay B. We show that a

redshifted component can be highlighted in the result Zr, above a continuum (the second

component). The respective values of both components are defined by a SNR (or a EW).

Other situations can be modelled, for instance the creation of a blueshift, and also a

blend of redshifted and blueshifted components, but these circumstances seem anecdo-

tal. Though the mathematical model allows large values of the redshift (or blueshift)

parameter, the reliability of the formulae is doubtful for strong deviations. Also, it is

not difficult to modify the model by adding other spectral shifts (like Doppler) to reach

larger values of z. Conversely, this paper shows that the conversion of a spectral shift in

a celerity is more risky with broad lines than with narrow lines.

Appendix

With the notations of the section 2 and using conditional mathematical expectations, we

have ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E [U (t) U∗ (t− τ)] = E
[∫∞
−∞ eiω(τ−C(t)+C(t−τ))sZ (ω) dω

]
= ...

...
∫∞
−∞ eiωτφC (τ, ω) sZ (ω)dω

E [U (t) Z∗ (t− τ)] = E
[∫∞
−∞ eiω(τ−C(t))sZ (ω) dω

]
= ...

...
∫∞
−∞ eiωτψC (ω) sZ (ω) dω.

(20)

If G is the output of the LIF of complex gain ψC (ω) and input Z, we have also, by the

Wiener-Lee relations [11]

E [G (t) Z∗ (t− τ)] =

∫ ∞

−∞
eiωτψC (ω) sZ (ω) dω.

Consequently, defining V by U=G+V, we deduce that E[V (t) Z∗ (t− τ)] = 0, which

implies E[V (t) G∗ (t− τ)] = 0, whatever τ ∈ R. Then, both components V and G are

uncorrelated and

E [V (t) V ∗ (t− τ)] =

∫ ∞

−∞
eiωτ

[
φC (τ, ω)− |ψC (ω)|2

]
sZ (ω) dω.
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1. Introduction

With ever-increasing applicability of relativistic wave equations in nuclear physics and

other areas, the relativistic bound state solutions of the Klein-Gordon and Dirac equations

for various potentials has drawn the attention of researchers. Setting apart the mathe-

matical complexity and computational difficulty, there are certain unresolved questions

in relativistic theory for treating a general potential. In fact, the way of incorporating a

general potential is not unambigiously defined.

In literature, several authors [1 - 5] have addressed the bound states of various kinds of

linear potential. While Chiu [6] has examined the quarkonium systems with the regulated

linear plus Coulomb potential in momentum space, Deloff [7] has used a semi-spectral

∗ drnarao@gmail.com
† bakagali@gmail.com
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Chebyshev method for numerically solving integral equations and has applied the same

to the quarkonium bound state problem in momentum space.

In recent years, Rao and Kagali [8 - 10] have analysed the bound states of spin-half and

spin-zero particles in a screened Coulomb potential, having a linear behaviour near the

origin and shown the existence of genuine bound states. Very recently, Rao and Kagali[11]

have reported on the bound states of a non-relativistic particle in a finite, short-range

linearly rising potential, envisaged as a quark-confining potential. In the present paper,

we explore the relativistic bound states of spinless particles in the one-dimensional linear

potential by considering the celebrated Klein-Gordon equation.

2. The Klein-Gordon Equation with the Linear Potential

Since the early days of quantum mechanics, the relativistic investigation of various one-

dimensional systems is considered to be important. The Klein-Gordon equation which

essentially describes spin zero particles like the pions and kaons, is a second order wave

equation in space and time and indeed a Lorentz invariant. Presently, we explore the

solutions of the stationary Klein-Gordon equation with the linear potential well, treating

it as a time-like component of a four-vector.

The one-dimensional time-independent form of the Klein-Gordon equation for a free

particle of mass ′m′, is [
d2

dx2
+

E2 −m2c4

c2�2

]
ψ(x) = 0 (1)

For a general potential V (x), treated as the fourth component of a Lorentz-vector, this

equation takes the form[12]

[
d2

dx2
+

(E − V (x))2 −m2c4

c2�2

]
ψ(x) = 0. (2)

Thus for the potential V (x), in the vector-coupling scheme, the above equation may

be written as [
d2

dx2
+

E2 − 2EV (x) + V 2(x)−m2c4

c2�2

]
ψ = 0. (3)

Interestingly, the above equation may be rewritten in the Schrodinger form, with an

effective energy and effective potential as[
d2

dx2 + (Eeff − Veff)

]
ψ = 0 (4)

with Eeff =
E2−m2c4

c2�2
and Veff =

2EV (x)−V 2(x)
c2�2

.
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Since Eeff and Veff are non-linear in E and V, some novel results may be expected.

As in the non-relativistic case, the allowed free-particle solution, outside the potential

boundry, would yield

ψ1(x) = C1e
αx −∞ < x ≤ −a (5)

ψ4(x) = D1e
−αx a ≤ x <∞, (6)

consistent with the requirement ψ(x) vanishes as |x| → ∞. Here α2 = −Eeff is implied.

To discuss the nature of the solution within the potential region, −a < x < a, we

consider a simple linear rising, finite range potential of the form [11]

V (x) = −V0

a
(a− |x|) (7)

in which the well depth V0 and range 2a are positive and adjustable parameters. Ow-

ing to its shape, this potential could also be called the trianglular potential well. The

linear, finite-ranged potential so constructed, serves as a good model to describe the en-

ergy specrum of particles, both relativistically and non-relativistically. We have recently

reported that this potential has a rich set of solutions and can bind non-relativistic parti-

cles. Presently, we study the bound states of spin zero particles with this linear potential,

treating it as a Lorentz vector.

Introducing the potential in Eqn.(3) and on simplification, we obtain, for x > 0,[
d2

dx2
+

1

c2�2

{
V 2

0

a2
x2 −

(
2EV0 + 2V 2

0

) x

a
+ (E + V0)

2 −m2c4

}]
ψ = 0 (8)

This equation may be written as[
d2

dx2
+

A

a2

(
x2

a2

)
+

B

a2

(x

a

)
+

C

a2

]
ψ = 0 (9)

where A = V̄ 2
0 , B = −2ĒV̄0 − 2V̄ 2

0 and C =
(
Ē + V̄0

)2 − m̄2.

Here V̄0 =
V0

�c/a
, Ē =

E
(�c/a)

and m̄ =
mc2

�c/a
.

It is trivial to note that V̄0, Ē and m̄ are all dimensionless quantities.

Defining a new variable

y =
x

a
,

Eqn.(9) transforms into a standard form [13]

d2ψ

dy2
+
(
Ay2 + By + C

)
ψ = 0, (10)

whose solutions are the well-known Parabolic Cylinder Functions.

Further, with the substitution z = 2
√

A
(
y + B

2A

)
, the above equation takes the form

4A
d2ψ

dz2
+

(
z2

4
−D

)
ψ = 0 (11)
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where D =B2−4AC
4A is implied.

Using the transformation ρ2 = z2
√
4A

, we obtain

d2ψ

dρ2
+

(
ρ2

4
− b

)
ψ = 0 (12)

with b =B2−4AC

(4A)
3
2

.

It is straightforward to check that b = m̄2

2V̄0
> 0, since both m̄ and V̄0 are positive. The

eigenfunctions of spinless particles, which are the solutions of Eqn.(12) may be written

in terms of the confluent hypergeometric functions as

ψ = N exp

(
−1

4
ρ2e

iπ
2

)
M

(
−ib

2
+

1

4
,
1

2
,
1

2
ρ2e

iπ
2

)
(13)

Physically admissible solutions require finiteness and normalizability and as is evident

from the above equation, we see that the wavefunction vanishes as |x| → ∞, and thus

being square integrable, represents genuine bound states.

3. Results and Discussion

In relativistic quantum mechanics, it is well-known that a general potential can be intro-

duced in the wave equation in two different ways following the minimal coupling scheme.

While in vector coupling, the potential V (x) is treated as the fourth component of a four

vector field, in scalar coupling, it is added to the invariant mass. Whereas the vector

interaction is charge dependent and acts differently on particles and antiparticles, the

scalar interaction is independent of the charge of the particle and has the same effect on

both particles and antiparticles. Hence, it is interesting to study the quantum dynamics

of relativistic particles for various interactions using different coupling schemes, with a

view to decide on the appropriate prescription for a given potential.

The linear potential, envisaged as a quark-confining potential, is central in particle

physics. Our investigation concerning the boundstates of spinless particle in the one-

dimensional linear, finite-range potential, is seemingly interesting. It is trivial to note that

the Klein Gordon equation can be reduced to a Schrodinger-like equation with an effective

energy Eeff and an effective potential Veff . The illuminating relation between the Klein

Gordon equation and the Schrodinger equation with an equivalent energy dependent

potential has a number of applications. If the potential is weak enough to ignore the

V 2 term, the relativistic formalism becomes equivalent to the non-relativistic formalism.

More importantly, in situations where the Klein-Gordon equation is not exactly solvable,

the Schrodinger form of the KG equation sheds some light on the problem as it could be

reduced to a solvable eigenvalue problem.

In the present work, we show that the one-dimensional Klein Gordon equation for the

linear potential in the vector-coupling scheme is reduced to a standard differential equa-

tion, whose solutions, consistent with the boundary condition are the parabolic cylinder
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functions, which on further simplification yield the confluent hypergeometric functions.

Apart from being elegant, the vector coupling prescription is particularly significant in

the sense that it preserves gauge invariance. Such studies, apart from being pedagogical

in nature, are potentially exciting and significant.

The linear potential well so described, has potential applications in electronics[14]. It

would be interesting to study the Dirac bound states of such a linearly rising potential

of finite range, which would serve as a good model to describe the quarkonia.
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