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Abstract: A systematic construction of a Lax pair and an infinite set of conservation laws for

the Ernst equation is described. The matrix form of this equation is rewritten as a differential

ideal of gl(2,R)-valued differential forms, and its symmetry condition is expressed as an exterior

equation which is linear in the symmetry characteristic and has the form of a conservation law.

By means of a recursive process, an infinite collection of such laws is then obtained, and the

conserved “charges” are used to derive a linear exterior equation whose components constitute

a Lax pair.
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1. Introduction

The search for the connections between symmetry and integrability has always been a

central problem in the study of nonlinear partial differential equations (PDEs). For

those PDEs having an underlying variational structure, the work of E. Noether and its

extensions (see, e.g., [1,2]) provide an important link between variational symmetries

and conservation laws. Non-variational connections between symmetry and integrability,

however, also exist. They are often related to the possibility of “linearizing” a nonlinear

PDE by use of a Lax pair, i.e., a pair of coupled PDEs linear in an auxiliary function ψ and

integrable for ψ on the condition that the original (nonlinear) PDE is satisfied.Linearity

is an important issue here,since the symmetry condition (characteristic equation) of a
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PDE is itself a linear PDE for the symmetry characteristic [1,2].

A given nonlinear PDE may often be linearized in more than one way by different

choices of a Lax pair. A particularly useful choice is the one in which the Lax pair plays

the role of a Bäcklund transformation connecting the PDE with its symmetry condition

[3], so that the solution ψ of the pair is a symmetry characteristic for the PDE (or, more

generally, is linearly dependent on a symmetry characteristic). Hence, in a sense, the

symmetry condition is “built” into the Lax pair. In this way, one obtains a symmetry of

the PDE by integrating the associated linear system.

A well-known example where these ideas find wide applications is the self-dual Yang-

Mills equation [4,5]. Interestingly, this has been shown to be a sort of prototype equation

from which several other known PDEs are derived by reduction [6,7]. One such PDE is

the Ernst equation of General Relativity describing stationary, axially symmetric grav-

itational fields. In a previous paper [8] the authors proposed a new Lax pair for this

equation (an older one was found by Belinski and Zakharov [9]) and showed that the

solution ψ of this pair is indeed linearly related to a symmetry characteristic. In addition

to giving new “hidden” symmetries, the Lax pair also leads to the construction of infinite

collections of conservation laws for the Ernst equation.

Admittedly, finding a Lax pair with specific properties almost always requires a certain

amount of guessing, as well as a lot of patience in a long trial-and-error process. We now

ask the question: Can a linear system such as that of [8] be derived in a systematic way?

This article answers this question in the affirmative. As we show, the symmetry condition

alone leads one straightforwardly to the discovery of infinite sets of conservation laws,

as well as a Lax pair having the desired properties. Our formalism is expressed in the

language of exterior differential forms which is both elegant and economical. Hence, for

example, differential equations expressing conservation laws, as well as systems of PDEs

constituting differential recursion relations or Lax pairs, will now be represented by single

exterior equations. In this regard, it would be more appropriate to speak of an exterior

linearization equation, rather than of a Lax pair in the ordinary sense of this term.

In short, the process is as follows: First, we rewrite the Ernst equation as a differ-

ential ideal of matrix-valued differential forms and express its symmetry condition as an

exterior equation which is linear in the symmetry characteristic. This latter equation is

in conservation-law form, and this fact allows us to introduce a first “conserved charge”

or “potential”. A second conservation law is then found, with a new potential, and

the process continues indefinitely, yielding a double infinity of conserved charges. These

charges are related to each other via a certain recursion relation and are used as Laurent

coefficients in a series whose terms involve powers (both positive and negative) of a com-

plex “spectral” parameter. This series (assuming it converges) represents some complex

function Ψ, which is shown to satisfy an exterior linearization equation equivalent to a

Lax pair.
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2. Mathematical Preliminaries

The variables xμ ≡ ρ, z (μ=1,2, respectively) will be regarded as local orthogonal coor-

dinates in a 2-dimensional Euclidean space with metric δμν . Geometrical objects defined

in this space (such as functions or differential forms) are assumed matrix-valued, with

values generally in gl(2,C) (with appropriate restrictions, such as real-valuedness, etc.,

in accordance with physical requirements).

The volume 2-form in our space is

τ = 1/2 εμν dx
μdxν = dρ dz

(the usual summation convention is assumed). For any 1-form

σ = σμ dx
μ = σ1 dρ+ σ2 dz,

the dual of σ with respect to τ is defined as the 1-form *σ with components

(∗σ)ν = τμν σ
μ = εμν δ

μλσλ ,

so that

∗σ = (∗σ)μ dxμ = −σ2 dρ+ σ1 dz.

In particular, *dρ=dz , *dz = −dρ. Also,

∗(∗σ) = − σ (1)

For 1-forms σ1 and σ2, we have that

∗σ1 ∧ ∗σ2 = σ1 ∧ σ2 , σ1 ∧ ∗σ2 = − (∗σ1) ∧ σ2 (2)

We note that the * operation is linear, so that

∗(ασ1 + β σ2) = α ∗ σ1 + β ∗ σ2 (3)

where α and β are 0-forms.

Given any differential forms ζ and ξ , we define the commutator

[ζ, ξ] ≡ ζ ∧ ξ − ξ ∧ ζ.

In particular, if σ is a 1-form and ψ is a 0-form, then [σ,ψ]=σψ − ψσ and, by the

antiderivation property of the exterior derivative,

d [σ, ψ] = [dσ, ψ] − {σ, dψ} (4)

where, in general, curly brackets denote anticommutators:

{σ1 , σ2} ≡ σ1 ∧ σ2 + σ2 ∧ σ1.
We note that, to simplify our notation, we will often omit the symbol ∧ of the exterior

product. It should be kept in mind, however, that exterior multiplication of differential

forms will always be assumed. Thus, an expression like σ1σ2 should be understood as

σ1∧σ2.
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3. Ernst Equation: Geometrical Formulation and Symmetry

We adopt the following matrix form of the Ernst equation [6,7]:

(ρg−1gρ)ρ + (ρg−1gz)z = 0 (5)

where subscripts denote partial derivatives with respect to the variables ρ, z, collectively

denoted xμ (μ=1,2, respectively). The matrix function g is assumed to be SL(2,R)-valued

and symmetric. With the parametrization

g =
1

f

⎡
⎢⎣ 1 ω

ω f 2 + ω 2

⎤
⎥⎦

and by setting E = f+iω, we recover the Ernst equation in the usual form,

(ReE)∇2E = (∇E)2.

With the substitutions

A = g−1gρ , B = g−1gz ,

equation (5) becomes equivalent to the system of PDEs

A+ ρ (Aρ +Bz) = 0 (6)

Bρ − Az + [A , B] = 0 (7)

The second equation is just the integrability condition in order that g may be recon-

structed from A and B.

We introduce the matrix-valued “connection” 1-form

γ = g−1dg = Adρ+B dz (8)

The integrability condition d(dg)=0 in order that g may be recovered from γ, together

with the obvious requirement that g be nonsingular, yield the Mauer-Cartan equation

ω=0, where ω is the 2-form

ω = dγ + γ ∧ γ = dBdz − dρ dA+ [A , B] dρdz (9)

We also construct the 2-form

d (ρ ∗ γ) = A dρ dz + ρ (dAdz + dρ dB) (10)

where *γ =-Bdρ+Adz .

We now observe that Eqs.(6) and (7) correspond to the system of exterior equations

d (ρ ∗ γ) = 0 , ω = 0 (11)
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Indeed, one may consider d(ρ*γ) and ω as 2-forms in a jet-like space of four variables:

the scalar variables xμ=ρ,z and the gl(2,R) variables A and B. Equations (6) and (7)

are recovered by projecting Eqs.(11) onto the base space of the xμ.

Let I{d(ρ*γ), ω} be the ideal of forms [10-12] generated by the 2-forms d(ρ*γ) and

ω. The first form is exact, thus its exterior derivative is trivially a member of the ideal,

while, as we can easily show, dω = ω ∧ γ − γ ∧ ω, which also belongs to I. We thus

conclude that I is a differential (closed) ideal.

The first of Eqs.(11) implies the existence of a matrix potential X such that ρ*γ=dX

(that is, ρA=X z, ρB=-X ρ).Then, *dX=- ργ, and, by the Mauer-Cartan equation ω=0,

we get

dρ ∗ dX − ρ d ∗ dX + dXdX = 0 (12)

[where use has been made of the first of Eqs.(2)]. In component form,

Xρ − ρ (Xρρ +Xzz) + [Xρ , Xz] = 0 (13)

We introduce the covariant derivatives

Dρ = ∂ρ + [A , ] , Dz = ∂z + [B , ] (14)

(where ∂ρ=∂/∂ρ and ∂z=∂/∂z) which are seen to be derivations on the Lie algebra of

gl(2,C)-valued functions. We also define an exterior covariant derivative D which acts

on gl(2,C) functions Φ as follows:

DΦ = dΦ + [γ, Φ] = (DρΦ) dρ+ (DzΦ) dz (15)

We now look at the symmetry problem for system (11). We first note that all symmetries

of a system of PDEs can be expressed as infinitesimal transformations of the dependent

variables alone [1,2]. Thus, all symmetries may be represented by “vertical” vector fields,

i.e., vectors with vanishing projections on the base space of the xμ. Let δg=αQ [g] be an

infinitesimal symmetry transformation of Eq.(5), where α is an infinitesimal parameter

and Q is a matrix-valued function which may depend locally or nonlocally on g. It is

convenient to set Q=gΦ, where Φ is another matrix 0-form. The infinitesimal symmetry

of Eq.(5) is then written as

δg = αgΦ (16)

(with appropriate restrictions on Φ in order that the transformation preserve the sym-

metric SL(2,R) character of g). This induces the symmetry transformations δA = αDρΦ,

δB=αDzΦ of system (6)-(7). These are summarized by the formal vector field

V = DρΦ
∂

∂A
+ DzΦ

∂

∂B
(17)

The symmetry condition on the ideal I of the 2-forms d(ρ*γ) and ω is that the Lie

derivative with respect to V should leave this ideal invariant [10-12]:

LV I ⊂ I .
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This is satisfied by requiring that

LV d(ρ ∗ γ) = LV ω = 0 mod I {d(ρ ∗ γ), ω } (18)

By using Eq.(9) for ω, taking into account that the Lie derivative commutes with the

exterior derivative and satisfies the Leibniz rule, and by noting that

LV γ = LV (Adρ+B dz) = (DρΦ) dρ+ (DzΦ) dz = DΦ = dΦ + [γ, Φ] ,

we find that

LV ω = ω Φ− Φω ≡ [ω , Φ],

which is automatically a member of the ideal I, hence satisfies the condition for ω in

Eq.(18). On the other hand, by noting that

LV ∗ γ = LV (−B dρ+ Adz) = ∗ DΦ,

we find that the condition for d(ρ*γ) is expressed as an exterior equation which is linear

in Φ:

d (ρ ∗DΦ) = 0 on solutions (19)

(where “on solutions” means: when Eqs.(11) are satisfied). In component form,

(ρDρΦ)ρ + (ρDzΦ)z = 0 on solutions (20)

The reader is invited to derive the symmetry condition (20) directly from the Ernst

equation (5) by assuming a symmetry characteristic Q=gΦ and by applying the abstract

formalism described in [3]. (Note, however, that our present notation is different from

that of [3]. Specifically, the symbols Dρ and Dz, which here denote covariant derivatives,

have the meaning of total derivatives in [3].)

4. Conservation Laws and Exterior Linearization Equation

We now turn to integrability characteristics of the Ernst equation. As is well known,

the hallmark of integrability is the existence of a linear system or Lax pair. This system

may be compactified into a single exterior equation involving 1-forms, which will be

referred to as an exterior linearization equation. The purpose of this section is to describe

a systematic construction of such a linearization equation for the Ernst equation, or

equivalently, for the exterior system (11).

We begin with the symmetry condition (19):

d (ρ ∗DΦ) = 0 (21)

The corresponding infinitesimal symmetry transformation is g′ = g + αgΦ, according

to Eq.(16). This means that g′ is a solution of the general PDE (5) when g is a solu-

tion. However, we will not require here that the new solution g′ conform to the extra
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physical restrictions imposed on the original solution g, namely, of being symmetric and

having unit determinant. Thus, all real solutions Φ of the exterior equation (21) will be

admissible (e.g., Φ = g−1gz = B).

As its component form (20) suggests, the exterior equation (21) expresses a conserva-

tion law valid for solutions of the Ernst equation. Equation (21) also implies the existence

of a “conserved charge” or “potential” Φ′, such that

dΦ′ = ρ ∗DΦ = ρ (∗dΦ + [∗γ, Φ] )

[where use has been made of the linearity property (3) of the star operation]. Starring

this equation, solving for dΦ, and requiring that d(dΦ)=0, we find another conservation

law:

d (ρ ∗DΦ′ − 2Φ′dz) = 0 ,

by which we introduce a new potential Φ′′ such that

dΦ′′ = ρ ∗DΦ′ − 2Φ′dz = ρ (∗dΦ′ + [∗γ, Φ′ ] )− 2Φ′dz .

Starring this and applying d(dΦ′)=0, we obtain yet another conservation law:

d (ρ ∗DΦ′′ − 4Φ′′ dz) = 0 , etc.

This process suggests that we consider the following exterior recursion relation:

dΦ (n+1) = ρ ∗DΦ (n) − 2nΦ (n)dz

= ρ (∗dΦ (n) + [∗γ, Φ (n) ] )− 2nΦ (n)dz
(22)

with Φ(0)=Φ representing a symmetry characteristic of the Ernst equation in its general

form (5) [i.e., a solution of Eq.(21)].

In order that the exterior equation (22) be integrable for Φ(n+1) for an already known

Φ(n), the integrability condition d(dΦ(n+1))=0 must be satisfied. This yields

d
(
ρ ∗DΦ (n) − 2nΦ (n)dz

)
= 0 (23)

We will now show that Eq.(23) is a conservation law valid for solutions of the Ernst

equation. The left-hand side of (23) is written as

l.h.s. (23) = d (ρ ∗ dΦ (n) + [ρ ∗ γ, Φ (n) ] − 2nΦ (n)dz)

= dρ ∗ dΦ (n) + ρ d ∗ dΦ (n) + d [ρ ∗ γ, Φ (n) ] − 2n dΦ (n)dz .

By using property (4) and the second property (2), we have:

d [ρ ∗ γ, Φ (n) ] = [d(ρ ∗ γ), Φ (n) ] − ρ ∗ γ dΦ (n) − ρ dΦ (n) ∗ γ
= [d(ρ ∗ γ), Φ (n) ] + ρ γ ∗ dΦ (n) + ρ ∗ dΦ (n)γ ,

dΦ (n)dz = dΦ (n) ∗ dρ = dρ ∗ dΦ (n) .
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Therefore,

l.h.s. (23) = (1−2n) dρ ∗ dΦ (n) +ρ d∗ dΦ (n) + [d(ρ∗ γ), Φ (n) ]+ ρ γ ∗ dΦ (n) + ρ ∗ dΦ (n)γ.

Now, by rewriting the recursion relation (22) with (n−1) in place of n, we can express

dΦ(n), thus also *dΦ(n), in terms of Φ(n−1). Substituting for *dΦ(n) into the expression

for the l.h.s. of (23), and taking into account that dγ + γγ = ω, we finally find:

l.h.s. (23) = [d (ρ ∗ γ) , Φ (n)] − ρ2 [ω , Φ (n−1)] .

We note that this expression vanishes when d(ρ*γ)=0 and ω=0, i.e., for solutions of the

Ernst equation. This proves the conservation-law property of Eq.(23).

As we have just shown, the conservation law (23) is the necessary condition for Φ(n)

in order that the exterior equation (22) be integrable for Φ(n+1). For n =0, Eq.(23) is

just the symmetry condition (21), which is indeed satisfied by Φ(0) since the latter is, by

assumption, a symmetry characteristic. Now, we must show that the solution Φ(n+1) of

Eq.(22) also conforms to condition (23) with (n+1) in place of n. This will ensure that the

recursive process may continue indefinitely for all values of n, yielding an infinite number

of conservation laws from any given symmetry characteristic Φ(0). This time we need to

eliminate Φ(n) from Eq.(22) in favor of Φ(n+1). By this process we will actually derive

the necessary condition for Φ(n+1) in order that the exterior equation (22) be integrable

for Φ(n) when Φ(n+1) is already known. This will allow us to use the recursion relation

(22) “backwards” to obtain potentials Φ(n) and corresponding conservation laws (23) for

negative values of n also. Thus, the validity of Eqs.(22) and (23) will be extended to all

integral values n =0, ±1, ±2, . . .

Starring Eq.(22) and solving for dΦ(n), we get:

dΦ (n) = − 1

ρ
∗ dΦ (n+1) − [ γ, Φ (n)] +

2n

ρ
Φ (n)dρ (24)

We apply the integrability condition d(dΦ(n))=0, and use Eq.(24) again to replace dΦ(n)

where it appears. Then, a lengthy but relatively straightforward calculation, performed

with the aid of properties (2) and (4), shows that

d
(
ρ ∗DΦ (n+1) − 2 (n+ 1)Φ(n+1)dz

)
= [d (ρ ∗ γ) , Φ (n+1)] − ρ2 [ω , Φ (n)] .

So, the left-hand side of the above equation vanishes for solutions of the Ernst equation,

as it should.

In conclusion, starting with any symmetry characteristic Φ(0), we can use the recursion

relation (22) to find a double infinity of conserved charges (potentials) Φ(n) for n = ±1,

±2, . . . These charges are increasingly nonlocal in g, since they involve integrals of

increasing order of expressions containing the function g.

With these charges in hand, we now introduce a complex variable λ (to be identified

with a spectral parameter) and construct a function Ψ(xμ,λ) having the following series

representation for λ �=0:

Ψ(xμ, λ) =
+∞∑

n=−∞
λnΦ (n)(xμ) (25)
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We assume that the series (25) converges to the function Ψ which is single-valued and

analytic (as a function of λ) in some annular region centered at the origin of the λ-plane.

Hence, Eq.(25) represents a Laurent expansion of Ψ in this region.

Multiplying the recursion relation (22) by λn, summing over all integral values of n,

and using Eq.(25), we find an exterior equation linear in Ψ:

ρ ∗ DΨ− 2λΨλ dz =
1

λ
dΨ (26)

or explicitly,

ρ ∗ dΨ+ [ρ ∗ γ, Ψ]− 2λΨλ dz =
1

λ
dΨ (27)

Relation (26) is an exterior linearization equation for the Ernst equation, equivalent to a

Lax pair. Specifically, the exterior equation (26), linear with respect to Ψ, is integrable

for Ψ when the exterior equations (11) are satisfied.

The proof of this statement is outlined as follows: The integrability condition for

solution of Eq.(26) is d(dΨ)=0. So, the exterior derivative of the left-hand side of this

equation must vanish. By using algebraic manipulations which are by now familiar to

the reader (such as, for example, {*γ,dΨ}=−{γ,*dΨ}, dΨλdz=dρ*dΨλ, etc.), the above

requirement leads to the following exterior equation:

dρ ∗ dΨ+ ρ d ∗ dΨ+ [d(ρ ∗ γ) , Ψ] + ρ { γ, ∗ dΨ} − 2λ dρ ∗ dΨλ = 0 (28)

By starring the linear system (27), we find an expression for *dΨ:

∗dΨ = − λρ (dΨ+ [γ, Ψ] ) + 2λ2Ψλ dρ (29)

Differentiating this with respect to λ, we have:

∗dΨλ = − ρ (dΨ+ [γ, Ψ] ) − λρ (dΨλ + [γ, Ψλ] ) + 4λΨλ dρ+ 2λ2Ψλλ dρ

Substituting this equation and Eqs.(29) into the integrability condition (28), we finally

get:

[ d (ρ ∗ γ)− λρ2ω , Ψ ] = 0 ,

where ω=dγ + γγ . The above relation is valid independently of Ψ and λ if d(ρ*γ)=0

and ω=0, i.e., for solutions of the Ernst equation. This proves that the integrability of

the exterior equation (26) for Ψ is indeed dependent upon the satisfaction of the Ernst

equation.

In component form, Eq.(26) is written as a pair of linear first-order PDEs for Ψ:

ρDρΨ− 2λΨλ = 1
λ
Ψz

ρDz Ψ = − 1
λ
Ψρ

(30)

The reader is invited to show that the integrability of system (30) for Ψ requires that

equation (5) is satisfied (see also [8]). Thus, (30) represents a Lax pair for the Ernst equa-

tion. In fact, this pair is equivalent to that found by different means in [8]. What we have

shown is that this system may actually be constructed by a remarkably straightforward

process, by starting with the symmetry condition of the field equation.
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5. Connection to Other Linear Systems

It can be shown (see [8,3]) that, by solving the linear system (30) for Ψ, for a given

solution g of the Ernst equation, one simultaneously obtains an infinitesimal “hidden”

symmetry of this equation, given by the expression

δg =
α

2πi

∫
C

dλ

λ

(
gΨ(xμ, λ) + ΨT (xμ, λ) g

)
(31)

where α is an infinitesimal parameter, C is a positively oriented, closed contour around the

origin of the λ-plane, and ΨT denotes the transpose of the matrix Ψ. (Here, g is assumed

to conform to the physical restrictions of being real, symmetric, and of unit determinant.

Moreover, Ψ is required to be traceless and to assume real values when λ is confined to

the real axis. Then, the new solution g′ = g + δg obeys the same physical restrictions as

g.) Since solutions of the system (30) [or equivalently, the exterior linearization equation

(26)] are of importance in this regard, any mechanism for producing as many solutions as

possible would be useful. We now exhibit a simple transformation which maps solutions of

(a form of) the Belinski-Zakharov (B-Z) linear system [9] into solutions of our linearization

equation (26).

We recall the exterior linearization equation (27):

ρ (∗dΨ+ [∗γ, Ψ] )− 2λΨλ dz =
1

λ
dΨ (32)

where Ψ conforms to the physical conditions mentioned in the previous paragraph;

namely, trΨ=0 and Ψ(xμ,λ*)=Ψ*(xμ,λ) (the asterisk here denotes complex conjuga-

tion). On the other hand, a variant form of the B-Z linear system, adapted to the

particular form of our equations, is the following:

ρ (∗dΦ + ∗γ Φ)− 2λΦλ dz =
1

λ
dΦ (33)

Let Φ(g;λ) be a non-singular solution of the exterior equation (33) for some solution g of

the Ernst equation. We assume that Φ becomes real for real values of λ. Consider now

the function Ψ(g;λ) given by

Ψ = ΦT Φ−1 (34)

where T is an arbitrary traceless matrix function of the form

T = F

(
z − λρ2

2
+

1

2λ

)
(35)

subject to the condition that F be real-valued for real values of λ. It may then be

proven that Ψ(g;λ) is a solution of the linearization equation (32).

Although only a subset of the entirety of solutions of Eq.(32) can be produced in

this fashion, the transformation (34)-(35) is an effective way of taking advantage of our

knowledge regarding the B-Z formulation for the purpose of finding hidden symmetries

of the Ernst equation.
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Our method for finding a linear system and an infinite number of nonlocal conserved

currents for the Ernst equation is closely related to that of Nakamura [13]. In the latter

case, the Lax pair does not contain derivative terms with respect to the spectral param-

eter. Moreover, the infinite set of conservation laws is accompanied by a corresponding

infinite set of nonlocal symmetries, which is not the case with our method for the Ernst

equation but which is the case with regard to another familiar nonlinear system, the self-

dual Yang-Mills (SDYM) equation. To achieve these extra characteristics, however, one

has to perform an analytic continuation of g(ρ,z) into complex space and introduce more

independent variables. In this way the Ernst equation transforms into a reduced form

of the SDYM equation, and the mathematical treatments of these two systems become

quite similar.

Summary

In this article we have pursued our study of the relation between symmetry and inte-

grability characteristics of the Ernst equation. Taking advantage of the conservation-law

form of the symmetry condition, we have inductively produced a double infinity of non-

local conserved charges by means of a recursion relation. These charges were then used

as Laurent coefficients in an infinite series whose terms involve powers (both positive

and negative) of a complex “spectral” parameter. Within its domain of convergence,

this series represents a function Ψ which is seen to satisfy a certain linear system, the

integrability of which for Ψ is possible in view of the Ernst equation. Finally, we have

presented a simple transformation which maps all solutions of the Belinski-Zakharov Lax

pair [9] into solutions of our linear system, and we have compared our results to those of

Nakamura [13]. Our formalism was developed in the language of differential forms and

exterior calculus, which allowed us to present our equations in a more compact, as well

as a more elegant form.

It is remarkable that integrability properties of the Ernst equation, such as the ex-

istence of Lax pairs and an infinite number of conservation laws, can be derived in a

straightforward way by performing rather natural manipulations on the symmetry con-

dition. This characteristic, which is also observed in the case of the SDYM equation,

reveals a profound, non-Noetherian connection between symmetry and integrability. It

will be further explored in future publications.
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