
EJTP 7, No. 24 (2010) 327–350 Electronic Journal of Theoretical Physics

A Brief Historical Review of the Important
Developments in Lanczos Potential Theory

P. O’Donnell∗ and H. Pye

Homerton College, University of Cambridge, Hills Road, Cambridge CB2 8PH, UK

Received 1 August 2010, Accepted 16 September 2010, Published 10 October 2010

Abstract: In this paper we review some of the research that has emerged to form Lanczos

potential theory. From Lanczos’ pioneering work on quadratic Lagrangians, which ultimately

led to the discovery of his famed tensor, through to the current developments in the area of

exact solutions of the Weyl–Lanczos equations, we aim to exhibit what are generally considered

to be the pivotal advances in the theory.
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1. Introduction

It is generally accepted that Lanczos’ ground-breaking paper entitled ‘The Splitting of

the Riemann Tensor’, [41] published in 1962 heralded Lanczos potential theory. However,

the ideas and concepts that were to form the basis of the 1962 paper were born from

two other very important but much overlooked papers: ‘A Remarkable Property of the

Riemann–Christoffel Tensor in Four Dimensions’ [39] (published in 1938) and ‘Lagrange

Multipliers and Riemannian Space’ [40] (published in 1949). The former introduces vari-

ational principles that are quadratic in the components of the Riemann tensor, and the

latter introduces for the first time the Lanczos tensor albeit in a different guise.

As an introduction to the topic of Lanczos potential theory, the fundamental papers

of Lanczos are first considered, demonstrating both the derivation of the theory and the

fundamental field tensor, Habc. In the following sections, both the 1949 [40] and 1962

[41] papers will be discussed, including the definition of Lanczos’ Lagrangian, Lagrange
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multipliers and gauge conditions. This will form the foundation for later sections that

discuss the application of these findings.

2. The Lanczosian Development of the Theory

Lanczos’ investigations into Riemannian space-time stem back, for the purposes of this

article, to his 1938, 1949 and 1962 papers, [39, 40, 41]. It is in the 1949 paper [40],

however, that Lanczos’ spintensor as he calls it first appears. This third-order tensor is

derived from a quadratic action principle by means of a rather novel approach based on

his investigations in the 1938 paper. It obviates the problems incurred when one attempts

to discuss the field equations of the metric in terms of the classical field equations. This

approach then effectively transforms the differential field equations to second order, thus

keeping them comparable with those of physics.

Based on the work of Einstein’s 1916 paper, [23], which establishes the connection

between Riemannian curved space and physics, the challenge was set to find a new geo-

metrical framework that would explain all physical phenomena — not just that of gravity.

For example, by incorporating electricity into the fundamental field equations or by uni-

fying all of the fundamental forces of physics. Some attempts worth noting that tried to

generalise the field equations include the geometry of Weyl [76, 77], Eddington [18, 19],

Schouten [61, 62] and Schroedinger [63, 64]. Others include the theories of Kaluza [38],

Einstein [23, 24, 25, 26, 27, 28], Einstein and Mayer [29], Veblen [72, 73, 74], Veblen and

Hoffmann [75], Hoffmann [36], Pauli [54, 55], Paul and Solomon [56, 57] and Bergmann

[6, 7]. All of these theories tried but failed to build or define a space-time structure that

unified all of the known fundamental fields.

In Lanczos’ 1949 paper, the theme of examining the prospect of a theory that is not

based purely on gravity is explored. Lanczos uses the assumption that the fundamental

field equations should be derivable from an action principle and retains the classical

framework of Riemannian geometry. Instead of using a linear action principle, Lanczos

also postulated that the principle should be quadratic in the curvature components.

Lanczos uses the quadratic action principle, but has to overcome one of the biggest

criticisms of the basic field equations: the field equations for the metric tensor, gik,

produce differential equations of fourth order rather than second order. As anything

above second order does not have any physical meaning [22], this, of course, creates a

problem when trying to relate the field equations to physics.

Lanczos utilised the variational principle [42] to investigate the basic structure of the

field equations, and in turn drew comparisons with the Einsteinian theories of gravity

[23, 24] and distant parallelism [26, 27]. The variational problem he employed assumes

that the components of the Riemann curvature tensor, Rijkm, are the basic metrical

quantities rather than the metric tensor, gik. This restricts the Riemann tensor, Rijkm,

by the Bianchi identities, [see 65, p. 143] which causes the Bianchi identities to act as the

auxiliary conditions of the variational problem. Consequently, a new fundamental field

tensor acting as a Lagrange multiplier is introduced, which restricts the fundamental
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field equations to no more than second order. In the 1949 paper, the fundamental nature

of the tensor is observed, but it is not until his 1962 paper [41], that applications are

considered.

Lanczos relates his spintensor to a similar third order tensor, Λi
jk, that occurs in

Einstein’s theory of distant parallelism [27]. Both tensors are antisymmetric in j and k

and are of third order. The main difference between the two quantities, however, is that

Lanczos’ tensor is a new fundamental tensor whereas Einstein’s is a derived tensor from

known quantities.

One important aspect of the 1949 paper is that it is firmly routed in four-dimensions.

This is because it is based on a transformation of the Bianchi identities, which is only

possible in four-dimensions. Although this is restrictive, it can be argued that it should

not be considered a problem, as both Maxwell’s action for electromagnetic fields and

Dirac’s equation of the electron strongly suggest a four-dimensional physical world.

Let us consider the 1949 paper in slightly more detail. We begin with Lanczos’ original

re-formulation of the Bianchi identities.

Defining the dual of the curvature tensor as

∗R∗
ijkm = Rabuvεabijεuvkm

[see 40, eq. II.1], where εabuv is the totally antisymmetric Levi-Civita tensor, allows the

Bianchi identities for the dual to be written as a divergence

∗R∗a
jkm;a = 0 (1)

[see 40, eq. II.2]. The above equation then allows the quantities Rijkm and gik to be

treated as separate metrical quantities rather than Rijkm being expressed in terms of gik
as long as the divergence condition (1) is satisfied. Hence, the divergence condition acts

as an auxiliary condition of the variation. The consequence of the auxiliary condition

yields a Lagrange multiplier, H i
jk, which is antisymmetric in j and k, but where the

symmetry properties of the first component are not known. The auxiliary condition of

the variation for the Lagrange multiplier is therefore

−1
2

∫
H i

jk;m
∗R∗

ijkmdτ

[see 40, eq. III.2], which is added to the action

1

2

∫
(∗R∗

ijkm)
2dτ

[see 40, eq. III.3].

After applying the variation, Lanczos formed a view of the Riemann tensor that

appears to be very similar in structure to that of the Riemann tensor expression involving

Christoffel symbols

∗R∗i
jkm = H i

jk;m −Hmjk;
i +Hj

i
m;k −Hk

i
m;j (2)
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[see 40, eq. III.5]. So in this case the tensor H i
jk appears to be analogous to the

Christoffel symbol, Γi
jk, [see 65, p. 97], but with a few obvious differences. Γi

jk does not

transform as a tensor whereas H i
jk transforms as a tensor of third order. Also, Γ

i
jk is

symmetric in j and k whereas H i
jk is anti-symmetric in j and k.

To derive Lanczos’ field equations, (2) is substituted into the Bianchi identities,
∗R∗i

jkm;a, and the tensor P
i
jk is introduced

P i
jk ≡ ΔH i

jk −Hjk;
i +H i

j;k −H i
k;j = 0

where rather than introducing the wave operator, �, Δ is the Laplacian operator, ∂2/∂x2
a,

as Lanczos works with an imaginary time coordinate, and

Hjk = Ha
jk;a and H i

j = H i
j
a
;a.

Therefore, a system of 24 partial differential equations of second-order and 24 related

field quantities has been generated.

In both the formalism of Einstein’s field equations and his theory of distant paral-

lelism, the importance of the divergence identities is seen. In the field equations, the

vanishing divergence of the contracted curvature tensor, Rik − 1/2Rgik, gives rise to

the conservation laws of momentum and energy. In Lanczos’ theory the two divergence

identities are

P a
ik;a ≡ 0 and (P k

ia − P i
ka);a ≡ 0

[see 40, eqns. V.1 and V.4], which as in Einstein’s theory of distant parallelism reduces

the number of independent field equations from 24 to 12.

Lanczos’ 1949 paper does not claim to, and does not, solve any of the great unsolved

problems of theoretical physics, but it does provide the basis of his 1962 paper, where the

importance of his spintensor is realised. Although Lanczos did not explicitly mention it

in his paper, the spintensor was shown by Takeno, [66], to generate the Weyl curvature

tensor and it is a surprising fact that Lanczos was unaware of this when he wrote the

1962 paper.

2.1 The Splitting of the Riemann Tensor

Einstein examined in some detail the anti-self-dual part of the Riemann tensor, and

it is from this analysis that the field equations were derived. As an analysis of the

self-dual was never completed it was the aim of Lanczos’ 1962 paper [41] to complete

the investigation and carry out a similar analysis for the self-dual part of the Riemann

tensor. His 1949 paper [40] had already defined the spintensor, Hijk, and shown that

by using it to integrate the field equations, the differential equations governing the field

equations could be reduced from fourth to second order. In this paper he proves how the

fundamental significance of the spintensor is implied by the relation to Dirac’s equations

[12, 13, 14, 15] of the electron.
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One of the main questions facing Lanczos, was whether the Dirac equations could

be derived from the Ricci tensor, Rik. This is an important question that needed to

be answered as it can hardly be denied that the electro-magnetic field does not have

something to do with the four-dimensional nature of the physical universe. Both the

double Maxwellian and Dirac equations have special significance in four-dimensions. As

the Ricci tensor exists in all dimensions and does not show anything unusual in four-

dimensions, Lanczos instead examined the Riemann tensor, Rijkm, as analogies can be

drawn from electromagnetic theory [47, 48] when considered in four-dimensions. In order

to establish this analogy, it was necessary to find a component of the Riemann tensor

that had the same symmetry properties of the Maxwell equations. As a result Lanczos

stated that

‘exactly those components of the Riemann tensor that are not embraced by the gravi-

tational equations of Einstein, give us the clue toward a deeper understanding of the

electromagnetic and wave-mechanical phenomena, with-in the framework of general rel-

ativity’ [41, p. 382].

In fact only in four-dimensions is it possible to move between the Riemann tensor and

its dual, analogous to the relationship between Fik and
∗F ∗

ik. Hence,

∗R∗ijkm =
1

4
Rabuvε

abijεuvkm

[see 41, eq. 1.2]. The Riemann tensor can be split into two parts called the anti-self-dual

and the self-dual:

Rijkm =
1

2
(Aijkm + Sijkm)

[see 41, eq. 1.5], where the anti-self-dual and the self-dual are defined respectively by

Aijkm = Rijkm − ∗R∗
ijkm

and

Sijkm = Rijkm + ∗R∗
ijkm

[see 41, eq. 1.4]. The Riemann tensor has 20 independent components, but they are not

evenly split between the self-dual and the anti-self-dual 10+10 as may be assumed, but

instead 9+11 where the anti-self-dual has 9 independent components and the self-dual

11. Contracting the Riemann tensor by the metric tensor, gik = δik, and applying the

cyclic identity

Rijkm +Rikmj +Rimjk = 0,

[see 41, eq. 1.13], we see that only two independent components exist which are self-dual

and which contribute two components to the self-dual tensor, Sijkm. In the anti-self-dual

case these components cancel out. Both the anti-self-dual and the self-dual contain nine

other components; this explains the unequal splitting of the Riemann tensor.
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This method of splitting the Riemann tensor was first attributed to Rainich [58] and

was later used by Einstein in his analysis of the anti-self-dual part of the Riemann tensor

that resulted in the derivation of his field equations and hence the theory of general

relativity. Although Einstein had great success when analysing the anti-self-dual part

he soon abandoned his research of the Riemann tensor because his theory could not be

combined with the electro-magnetic tensor. Lanczos therefore completed the analysis to

yield a fuller understanding of the Riemann tensor without which we would lack important

knowledge about Riemannian geometry.

Both Einstein and Lanczos used the variational principle to derive their field equa-

tions. As Einstein argued that the fundamental field equations of physics are inherently

of first or second order, he chose a particularly simple Lagrangian for the variational

derivation of his field equations. In the case of Einstein’s Lagrangian, the resulting field

equations are not higher than second order. On the other hand, Lanczos’ field equations

were reduced to first order. Of course it was hoped that the Lagrange multipliers possessed

important physical significance; for example the ‘potential energy’ Lagrange multiplier

of Hertz’s forceless mechanics [35]. For this reason it has been debated whether Lanczos’

spintensor, which forms one of the Lagrange multipliers, also has physical meaning. To

strengthen the case that this is so, it can be argued that both the trace and trace-free

part of the Riemann curvature tensor have physical meaning. Therefore, is it possible

that upon splitting the Riemann tensor to derive Lanczos’ spintensor, the latter also has

a physical meaning

In constructing the action, Lanczos merely assumed that there existed a Lagrangian,

L, that would generate the field equations. Using a number of pre-disposed conditions or

auxiliary conditions, he then formulated his Lagrangian. Firstly, he considered L being

constructed from the Riemann tensor and the metric tensor

A =

∫
Lg

1
2dx1dx2dx3dx4 with L = L(∗R∗ijkm, gik)

[see 41, eqns. 2.2 and 2.3] where the important point to note in the construction of

this Lagrangian is that the dual, ∗R∗
ijkm, and the metric tensor, gik, are treated as

independent quantities. Lanczos was able to introduce this property because of the

presence of the auxiliary conditions. The first auxiliary condition to be introduced was

that ∗R∗ijkm had to satisfy the Bianchi identities, ∗R∗ijkm
;m = 0. The associated Lagrange

multiplier for this first condition is Lanczos’ spintensor, Hijk. The second condition

was that the Christoffel symbols, under variation, must satisfy Γj
ik − {jik} = 0 where

{jik} = 1
2
gjl(gil,k + gkl,i − gik,l). In this case the Lagrange multiplier is P ik

j . Lastly, he

introduced the contracted Riemann tensor, Rik, where Rik ≡ Γk
jk;i−Γk

ij;k+Γ
k
ilΓ

l
jk−Γk

ijΓ
l
lk;

hence Rik − Γk
jk;i + Γk

ij;k − Γk
ilΓ

l
jk + Γk

ijΓ
l
lk = 0. The corresponding Lagrange multiplier is

ρik. As all the auxiliary conditions are equal to zero, they can be added on to the initial

Lagrangian without altering the properties of the original expression:

L′ = L(∗R∗ijkm, gik) +Hijk
∗R∗ijkm

;m + P ik
j (Γ

j
ik − {jik})

+ρik[Rik + Γj
kj;i − Γj

ik;j + Γj
ilΓ

l
kj − Γj

ikΓ
l
lj]
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[see 41, eq. 2.7]. Now that the Lagrangian has been established, varying with respect to

appropriate geometrical quantities becomes a straightforward procedure.

A large proportion of the 1962 paper is dedicated to his spintensor, the Lagrange

multiplier, Hijk, but to gain a complete understanding of Lanczos’ Lagrangian all the

Lagrange multipliers need to be examined. The Lagrange multiplier, Hijk, was referred

to by Lanczos as the spintensor. It can be hypothesised that Lanczos gave it this name

due to the connection between Dirac’s equation of the electron [12, 13] and the splitting

of the Riemann tensor. Examining Hijk further it can be seen, due to the anti-symmetric

nature displayed in the last two components, that it has 24 components whereas its

conjugate contains 20. In order to restrict these components to match the desired 20,

without any loss of generality, the following condition can be imposed,

∗Haj
a = Huvaε

uvaj = 0

[see 41, eq. 2.9], or alternatively it can be written as the cyclic condition

Hijk +Hjki +Hkij = 0 (3)

[see 41, eq. 2.10].

Lanczos considered each multiplier in turn to examine its importance. The Lagrange

multiplier, ρik, was split into it’s trace and trace-free parts, but the significance of the

trace-free part was not identified. On splitting ρik into it’s trace and trace-free parts one

yields

ρik = Qik + qgik where 4q = ρikgik

and Qi
i = Qikgik = 0

[see 41, eqns. 2.11, 2.12 and 2.13], but this is as far as Lanczos’ discussion of ρik goes.

The fundamental tensor is examined in some detail, so the only other Lagrange multiplier

left to investigate is the canonical variable P ik
j. As Lanczos proves that the variation

of Γj
ik yields a relation for P

ik
j that is not a new tensor, this multiplier ceases to be of

further interest.

The variation of gik gives

∂L

∂gik
+
1

2
Lgik = Qab

∗R∗aibk +QiaRk
a +QkaRi

a

−1
2
RQik − qRik − 1

2
Rqgik

−1
2
(P iak + P kai − P ika);a

[see 41, eq. 2.15]. In order to vary the Lagrangian by Rijkm, we need to first specify the

factor δ∗Rijkm

Bijkm =
∂L

∂ ∗R∗ijkm −Hijk;m −Qikgjm + qgikgjm
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[see 41, eq. 2.16], applying the symmetry properties of ∗R∗ijkm

1

8
[Bijkm +Bkmij +Bjimk +Bmkji

−Bjikm −Bkmji − Bijmk − Bmkij

−1
3

(
Babuvε

abuv
)
εijkm]

[see 41, eq. 2.17], allows the final variation to become

∂L

∂ ∗R∗ijkm = Hijk;m +Qikgjm − qgikgjm (4)

[see 41, eq. 2.19]. From this variation, Lanczos was able to introduce two gauge conditions

where (4) remains invariant under the transformations

Hijk → H ′
ijk − Φjgik + Φigjk

Qik → Q′
ik + Φi;k + Φk;i − 1

2
Φα

;αgik

q → q′ − 1

2
Φα

;α

[see 41, eq. 2.20], where Φi is an arbitrary vector that can be used to normalise Hijk.

With the choice of Φi set to

Φi = −1
3
Hijkg

jk,

[see 41, eq. 2.21], we see the first gauge condition is

Hijkg
jk = Hi

a
a = 0,

[see 41, eq. 2.23], which reduces the number of independent components from 20 to 16.

In addition, introducing the divergence-free gauge condition

Hij
k
;k = 0,

[see 41, eq. 3.5], does not reduce the number of components of Hijk, but instead reduces

the number of components to 10 by reducing the number of independent quantities of

the Weyl-Lanczos equations (which will be introduced later) and hence equals the same

number of components as the Weyl tensor. We therefore have a tensor, Hijk, with the

same number of components as the Weyl tensor, which will be subsequently shown to

differentially generate the Weyl conformal tensor.

Of major concern was the fact that Lanczos’ Lagrangian, L = Rijkm
∗Rijkm, yields

a function that vanishes identically [41, p. 384]. Because of this property, it is not

possible to derive the field equations from this Lagrangian. Even though one cannot use

the Lagrangian to derive the field equations, the study still highlights some interesting

findings concerning an arbitrary Riemannian geometry of four dimensions. However,

using a similar approach to that of Einstein [25] and Rainich [58] Lanczos solved the
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problem of the uneven (9+11) matching of components when splitting the Riemann

tensor. By including the Ricci scalar and the metric tensor the new anti-self-dual and

the self-dual become

Uijkm = Aijkm +
1

6
R(gikgjm − gimgjk)

Vijkm = Sijkm − 1

6
R(gikgjm − gimgjk)

[see 41, eq. 3.9], where

Rijkm =
1

2
(Uijkm + Vijkm)

[see 41, eq. 3.10], after some manipulation Vijkm can be written as

Vijkm = 2Hijk,m − (Hik +Hki)gjm (5)

[see 41, eq. 3.13]. Unlike the original form of the self-dual, Sijkm, in this new formulation,

Vijkm is written in terms of a ‘generating function’, Hijk. It can then be argued that

Lanczos’ spintensor is present in every Riemannian manifold of four dimensions (Lanczos

1949). Another observation is that Hijk is also the gradient of an anti-symmetric tensor

of second order

Hijk = Fij;k

[see 41, eq. 2.24], with

Hijkg
ik = Ha

ja = 0 and Hijk +Hjki +Hkij = 0,

[see 41, eq. 2.23], which coincide with the double set of Maxwellian equations

F ia
;a = 0 and ∗F ia

;a = 0.

It was Einstein’s discovery that posed the idea that all physical phenomena can be

interpreted as geometrical properties of space-time. But how does one deal with the

matter tensor and what is its structure? Lanczos argued that these questions could not be

answered until a complete understanding of four-dimensional Riemannian geometry was

obtained and that the spintensor, a third-order antisymmetric tensor with 16 independent

components, would play a fundamental role.

Although understanding the implications of the field equations is a formidable task,

Lanczos laid down three statements that he considered would encapsulate the general

function of the field equations.

‘Riemann’s geometry remains untouched by any encroachments through additions or

generalisations. . . ’.

The presence of an unadulterated Riemann geometry of specifically four dimensions

brings into existence a tensor of third order Hijk of 16 components. . . ’.
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The new hierarchy Φi, gik, Hijk, Rijkm. . . ’. [41, p. 389]

The introduction of the third order spintensor, Hijk, bridges the gap between the

second order metric tensor, gik, and the fourth order Riemann curvature tensor, Rijkm.

Lanczos places the importance of his spintensor between the metric tensor and the Rie-

mann tensor. The tensor that he believed to be the most important was the vector

potential, Φi. Lanczos considered these quantities to provide “... all the necessary and

sufficient building blocks for a rational explanation of electricity and the quantum phe-

nomena”. The choice of naming his Lagrange multiplier Hijk a ‘spintensor’ is perhaps

explained by the fact that the Dirac equation describing an electron with spin without a

mass term is analogous to the set of equations resulting from his method of splitting the

Riemann tensor.

Lanczos’ discovery of the spintensor is normally attributed to his 1949 and 1962

papers, but his considerations leading to his discovery can be traced back as far as his

much earlier 1938 paper [39]. Again the 1938 paper centres around the earlier papers of

Rainich [58] and Einstein [25] looking at the results relating to the self-dual and anti-self-

dual, but it is here that he introduces the quadratic variational principle that becomes key

to his findings in the 1962 paper. As mentioned earlier the spintensor is first introduced

in the 1949 paper, but this is only discussed for weak fields; it is in the 1962 paper that

the spintensor is proven to be universally valid. It is this result that proves that the

spintensor holds for all four dimensional Riemannian manifolds when obtained from the

variation of a Lagrangian.

3. Lanczos’ Spintensor as a Potential

Lanczos’ 1962 paper is generally considered as one of his most profound contributions

to general relativity and Riemannian geometry. Yet it resided in virtual obscurity for

some years. There are perhaps two explanations for this. Firstly, Lanczos makes no iden-

tification as to what is being generated by his spintensor. According to a conversation

Lanczos had with Joseph Zund in 1967, Lanczos was apparently unaware that his spinten-

sor generated the Weyl tensor, and furthermore, he appeared completely unaware of the

Weyl tensor’s existence. It is just conceivable that other relativists may also have been

unaware of the significance of the spintensor’s generating properties. Secondly, there has

been, even to this day, controversy surrounding its conception by invoking the variational

process. It has been argued that all manner of entities can be conceivably produced for

a particular action, but unless there are sound geometrical arguments to supplement or

support any variational inferences then one would be unwise to rely wholly upon results

obtained in this way. The second of these objections will be rectified presently; however,

it took two years before a relativist called Hyôitirô Takeno published a result that would

ultimately raise the profile of Lanczos’ spintensor and begin the flurry of research activity

that it enjoys today.

In his 1964 paper ‘On the Spintensor of Lanczos’ Takeno [66] exhibited Lanczos’
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generating function together with its associated symmetries and gauge conditions in a

systematic way. Although from a historical perspective, the significant result of this pa-

per was Takeno’s proof that the Weyl conformal tensor was being generated by Lanczos’

spintensor, it also heralded the first attempt to generate explicit forms of the spintensor

for spherically symmetric plane wave solutions to the Einstein field equations that incor-

porated electromagnetic fields. In addition, he gave a necessary and sufficient condition

for a quantity H ′
ijk = Hijk+Aijk to also be a spintensor for a given space-time, where Aijk

satisfied the same symmetries, gauge conditions etc. as Hijk and which Takeno termed

an s-tensor. He continued to say that the s-tensor was a spintensor of a given space-time

if and only if the space-time is conformally flat, which is equivalent to putting the LHS

of (5) equal to zero.

Now, it is well known that the vector potential φi generates the Maxwell tensor Fij

differentially. If the LHS of (5) is considered to be the Weyl conformal tensor then in an

analogous way, one may regard that Lanczos’ spintensor acts as a potential for the Weyl

tensor. Thence, the Lanczos potential, Hijk, generates the Weyl tensor, Cijkl, via the set

of equations called the Weyl–Lanczos equations :

Cabcd = Habc;d +Hcda;b +Hbad;c +Hdcb;a

+He
ac;egbd +He

bd;egac

−He
ad;egbc −He

bc;egad. (6)

4. Lanczos Potential Theory and the 2-Spinor Formalism

If one considers the Weyl–Lanczos equations (6) for a moment it will quickly become

apparent that solving them for any particular space-time poses quite a few problems.

They are, of course, non-linear and the set comprises 16 individual differential equations

with 16 independent components of Hijk. Clearly, solving this system of equations as

they stand would prove to be a formidable task unless highly symmetric space-times

were considered, and even then this would be most arduous if undertaken analytically.

However, the problem becomes more tractable if one employs the machinery of the two-

component spinor formalism.

The task of re-writing the Lanczos potential, Hijk, and the tensor form of the Weyl–

Lanczos equations utilising 2-spinors was successfully accomplished in 1968 by Maher and

Zund in their paper ‘A spinor approach to the Lanczos spin tensor’[45]. In their paper

the connecting quantities that allow transference between world-tensors and spinors are

the Infeld–van der Waerden symbols, σa
AB′ . Collectively, this symbol represents, up

to a factor, four 2 × 2 Hermitian matrices i.e. the three Pauli spin matrices and the

unit matrix. However, it is now conventional to dispense with this symbol and merely

define the spinor equivalent of a particular tensorial quantity. Thence, in spinor form,

the Lanczos (tensor) potential can be written as

Habc = εA′B′HABCC′ + εABHA′B′C′C , (7)
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where the bar denotes complex conjugation. So far neither the cyclic condition nor the

gauge conditions have been imposed on (7); thus the only symmetry properties present

are

HABCC′ = H(AB)CC′ .

However, on applying these conditions, one finally arrives at the spinor equivalent of the

Lanczos tensor:

HABCC′ = H(ABC)C′ . (8)

If one now replaces the indices of (8) with all of the various combinations of the

dyad indices 0 and 1, one obtains the eight complex scalar quantities known as Lanczos

coefficients. These eight quantities can be related to a spin basis oA and ιA as follows

H0 = H0000′ = HABCC′oAoBoCoC
′

H1 = H0010′ = HABCC′oAoBιCoC
′

H2 = H0110′ = HABCC′oAιBιCoC
′

H3 = H1110′ = HABCC′ιAιBιCoC
′

H4 = H0001′ = HABCC′oAoBoCιC
′

H5 = H0011′ = HABCC′oAoBιCιC
′

H6 = H0111′ = HABCC′oAιBιCιC
′

H7 = H1111′ = HABCC′ιAιBιCιC
′
. (9)

Or equivalently a null tetrad basis, l, n, m and m:

H0 = Habcl
amblc = H131

H1 = Habcl
ambmc = H134

H2 = Habcm
anblc = H421

H3 = Habcm
anbmc = H424

H4 = Habcl
ambmc = H133

H5 = Habcl
ambnc = H132

H6 = Habcm
anbmc = H423

H7 = Habcm
anbnc = H422. (10)

Now it is a relatively straightforward procedure of determining the spinor equivalent

form of (6). We merely quote the result, but see, for example, O’Donnell (2003) [51] for
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a detailed derivation. Thence,

Cabcd = ΨABCDεA′B′εC′D′ +ΨA′B′C′D′εABεCD

= ∇DD′(HABCC′εA′B′ +HA′B′C′CεAB)

−∇CC′(HABDD′εA′B′ +HA′B′D′DεAB)

+∇BB′(HCDAA′εC′D′ +HC′D′A′AεCD)

−∇AA′(HCDBB′εC′D′ +HC′D′B′BεCD)

−∇EE′(HA
E

CC′εA′ E
′
+HA′ E

′
C′CεA

E)εBDεB′D′

−∇EE′(HB
E

DD′εB′ E
′
+HB′ E

′
D′DεB

E)εACεA′C′

+∇EE′(HA
E

DD′εA′ E
′
+HA′ E

′
D′DεA

E)εBCεB′C′

+∇EE′(HB
E

CC′εB′ E
′
+HB′ E

′
C′CεB

E)εADεA′D′ .

Transvecting with εA
′B′

εC
′D′

and simplifying yields

2ΨABCD = ∇D
E′
HABCE′ +∇C

E′
HABDE′

+∇B
E′
HCDAE′ +∇A

E′
HCDBE′ .

Further simplification can be achieved by employing the spinor differential gauge

∇CC′
HABCC′ = 0 resulting in the spinor form of the Weyl–Lanczos equations (6):

ΨABCD = 2∇D
E′
HABCE′ . (11)

The benefits of this equation as it stands are extremely limited. Indeed, it is only

when (11) is re-written in terms of spin coefficients that solutions are forthcoming. This

is categorised by the now familiar form:

Ψ0 = −2[DH4 − δH0

+(ε− 3ε− ρ)H4 + (α + 3β − π)H0 + 3κH5 − 3σH1]

Ψ1 = −2[DH5 − δH1

+(ε− ε− ρ)H5 + (α + β − π)H1 + 2κH6 − 2σH2 − πH4 + μH0]

Ψ1 = −2[δH4 −ΔH0

+(β − 3α− τ)H4 + (−μ+ 3γ + γ)H0 + 3ρH5 − 3τH1]

Ψ2 = −2[DH6 − δH2

+(ε+ ε− ρ)H6 + (α− β − π)H2 − 2πH5 + 2μH1 + κH7 − σH3]

Ψ2 = −2[δH5 −ΔH1

+(β − α− τ)H5 + (−μ+ γ + γ)H1 + 2ρH6 − 2τH2 − λH4 + νH0]

Ψ3 = −2[DH7 − δH3

+(ε+ 3ε− ρ)H7 + (α− 3β − π)H3 − 3πH6 + 3μH2]

Ψ3 = −2[δH6 −ΔH2

+(β + α− τ)H6 + (−μ− γ + γ)H2 − 2λH5 + 2νH1 + ρH7 − τH3]

Ψ4 = −2[δH7 −ΔH3

+(β + 3α− τ)H7 + (−μ− 3γ + γ)H3 − 3λH6 + 3νH2].
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Another seven years had to pass before anyone ventured to re-visit Lanczos potential

theory. In fact it was Zund [78] again in his 1975 paper ‘The theory of the Lanczos spinor’

who took up the gauntlet. This paper took a more systematic approach in deriving the

Weyl–Lanczos equation using the 2-spinor formalism. Moreover, it was the first attempt

to obtain explicit forms of the Lanczos coefficients for a number of space-time metrics.

Research in Lanczos potential theory was a trifle sparse throughout the remainder of

the 1970’s. However, again in 1975, Taub [67] considered Lanczos’ 1962 paper, and be-

ing apparently oblivious to the earlier articles of Takeno and Maher & Zund, derived

the 2-spinor form of both the Lanczos potential and the Weyl–Lanczos equations. It

is interesting to note that he did not continue and obtain the spin coefficient form of

the Weyl–Lanczos equations in that paper. Possibly, the solutions to the Weyl–Lanczos

equations had no interest for him, which is strange considering his interest in exact solu-

tions to Einstein’s field equations. Also, Taub claims that Lanczos himself showed that

the LHS of (5) was the Weyl conformal tensor, which was not quite the case. The most

interesting aspect of Taub’s paper is his identification of a differential operator exhibited

in the neutrino equation, the vacuum Maxwell equations and the Bianchi identities in

spinor form, which is analogous to the differential operator connecting the Lanczos spinor

with the Weyl spinor in (11).

It could conceivably be asked whether it would be possible to construct for the Rie-

mann tensor an analogous expression to (6). This area of endeavour has become formally

known as the Riemann–Lanczos problem. The question was considered by Brinis Udes-

chini [68, 69, 70, 71] in a series of papers that spanned four years. Udeschini argued that

the Riemann tensor can be generated by the derivatives of the Lanczos potential alone,

i.e.

Rabcd = Habc;d −Habd;c +Hcda;b −Hcdb;a. (12)

However, it was shown by Bampi & Caviglia [5] that the proposition (12) is false in six

or less dimensions, and later by Massa & Pagani [46] for four dimensions. Nevertheless,

the ideas encompassed in these papers furthered the scope of the theory by steering it in

a different direction.

4.1 Proof of the Existence of the Lanczos Potential

As mentioned earlier there has been some controversy surrounding the conception of the

Lanczos potential. This stems from the fact that the method employed was the variational

process. Indeed, a proof of existence was part of the paper by Bampi & Caviglia that

refuted proposition (12). It was based essentially upon reformulating equation (6) but

without imposing the cyclic condition (3) and then employing Cartan’s condition for

involutiveness [9]. Reinhard Illge’s 1988 paper ‘On the potentials for several classes of

spinor and tensor fields in curved spacetimes’ [37] also gave a spinorial proof of the

existence of the Lanczos potential, but the importance of this paper arises from the fact

that it is the first to give a derivation of the wave equation for the Lanczos potential.
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5. Solutions of the Weyl–Lanczos Equations

It must be considered that the ultimate goal in Lanczos potential theory is to deter-

mine unambiguously an algorithm that allows one to yield a complete set of Lanczos

coefficients (9) and (10) for any given four dimensional pseudo-Riemannian space-time.

Thus, for any given set of Weyl scalars solutions to (6) should be obtainable, in principle.

Yet, research in this area although abundant has merely scratched the surface of this in-

scrutable dilemma. Indeed, after Takeno and Zund’s attempts at solving these equations,

the topic drew little attention until the late 1980s when Novello & Velloso in their paper

‘The connection between general observers and Lanczos potential’ [50] succeeded, albeit

heuristically and with the aid of computational resources, in determining some algo-

rithms for the Lanczos potential for three important space-times: Schwarzschild, Kasner

and Gödel. The surprising aspect of their paper was the total omission of the 2-spinor

formalism in any of the calculations, which would have afforded considerable reduction

in computation. Their approach was essentially time-like and consisted of providing an

ad hoc definition for a Lanczos potential in a given space-time. The various kinemati-

cal quantities were then manipulated to show that the given algorithm indeed satisfied

the various kinematical assumptions together with the algebraic and differential Lanczos

gauge conditions.

Unquestionably, Novello & Velloso’s paper was responsible for sparking off a resur-

gence in Lanczos Potential theory. The space-times that were considered have been

re-investigated regularly over the intervening years through a number of different ap-

proaches. Interestingly, at about the same time a team of investigators in Mexico had

been working along similar lines only this time using the spinor formalism. A particularly

important paper and one that heralded numerous others from the Mexican researchers

was published in 1989 by de Parga, Chavoya & Bonilla [10] entitled ‘Lanczos potential’.

The paper gave in a concise manner the Weyl–Lanczos equations together with some

possible form of the Lanczos potential for Petrov type N , III and O space-times. It

was also the results of this paper that led to a great deal of speculation concerning the

possibility that the Lanczos coefficients, (9) and (10), are merely spin coefficients in a

different guise. A substantial amount of work followed from this paper with the primary

aim of obtaining Lanczos coefficients for other space-times [11, 3, 32, 30, 31, 33, 43, 44].

Indeed, this particular line of investigation dominated the theory for some considerable

time and led to a number of different approaches for generating Lanczos coefficients. In

nearly all cases, the Lanczos coefficients obtained for various space-times could be di-

rectly formulated in terms of spin coefficients. However, it was shown by O’Donnell [53]

that for the Schwarzschild metric a set of Lanczos coefficients could be obtained that

could not be reduced merely to spin coefficients. Of course, the Lanczos coefficients for

this metric had already been obtained a number of times using different methods, but

this paper also illustrated, for the first time, the practicality of yielding different sets of

Lanczos coefficients for the space-time — which although was expected from the theory

was not previously realised.
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It is well known that the majority of space-time metrics that exhibit interesting prop-

erties usually incorporate some number of non-null Killing vectors. Indeed, this was the

ansatz that Dolan & Kim adopted, which would yield a completely different approach of

determining Lanczos coefficients for various space-times including those mentioned ear-

lier. Their paper ‘Some solutions of the Lanczos vacuum wave equation’ [16] utilised some

of the results previously obtained in the Novello & Velloso paper [50]. Briefly, consider a

non-null Killing vector ξa that satisfies the equation

ξa;b + ξb;a = 0.

Furthermore, let the Killing vector be hypersurface–orthogonal:

ξ[a;bξc] = 0.

Now define the unit tangent vector to the group trajectories: ua = ξa/ξ where ξ
2 = ξaξ

a

remains invariant along the group trajectories. Because ua is expansion-free, shear-free

and hypersurface–orthogonal it can be shown that

ua;b = aaub

where aa is an acceleration 4-vector of the group congruence:

aa = ua;cu
c.

So, for example, the Schwarzschild solution admits a time-like and a space-like hypersurface–

orthogonal Killing vector. Employing Dolan & Kim’s method the results in two analytical

expressions for the Lanczos potential both in each case of satisfy Lanczos’ gauge condi-

tions. The Lanczos potential found for the time-like Killing vector was the same one

exhibited in the Novello & Velloso paper [50]. See also Mora & Sanchez [49]. Theor Phys

(2009))

Another method for generating Lanczos coefficients for various space-times was ob-

tained by O’Donnell [52]. In the paper ‘A method for finding Lanczos coefficients with the

aid of symmetries’ a set of algorithms involving the Lanczos potential and certain kine-

matical quantities for some arbitrary space-times, obtained using time-like vector fields,

was considered. It was shown that such algorithms appear most naturally in the context

of the spin coefficient formalism. Furthermore, explicit solutions were derived for the new

spin coefficient algorithms. Based on the three algorithms presented in Novello & Velloso

[50], subsequent formulations were obtained using the standard Newman–Penrose null

tetrad formalism. The Lanczos coefficients obtained in this way for the three space-times

in question conveyed some interesting properties for the corresponding Petrov types. The

identification of these ‘symmetries’ could be utilised to help verify other possible explicit

forms for the Lanczos coefficients for different space-times but having the same Petrov

type as those obtained.
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6. The Wave Equation for the Lanczos Potential

The tensor form of the wave equation for the Lanczos potential was first exhibited in [41].

Essentially, Lanczos employed (6) to expand the Schouten form of the Bianchi identities

Cabc
d
;d = Jabc (13)

where Jabc = Rca;b−Rcb;a− 1
6
(gcaR;b− gcbR;a), and then utilising the Ricci identity yields

the result:

�Habc = Jabc −RapcqH
qp

b +RbpcqH
qp

a

−Rc
pHabc −Ra

pHcpb +Rb
pHcpa

−1
2
[(Rbpqrgac +Rapqrgbc)H

qrp +RabpqH
pq

c].

However, this equation does not reduce to �Habc = 0 in vacuum. Marred by typo-

graphical errors, Lanczos’ original form of the wave equation has undergone a number of

re-derivations. Roberts [59] succeeded in producing a partially corrected version of the

Lanczos wave equation:

�Habc = Jabc + [Rbpqrgac −Rapqrgbc]H
pqr

+Rs
cHabs −Rs

bHcsa +Rs
aHcsb

+RbqpcHa
pq −RaqpcHb

pq −RpqabHc
pq.

Nevertheless, this too is not quite the correct version. In vacuum it does not reduce to

�Habc = 0, but produces an unnecessary constraint.

The first re-derivation of Lanczos’ wave equation was due to Illge [37]. He used the

2-spinor formalism to show that if the Weyl spinor satisfied the spinor version of (13):

∇DC′ΨABC
D = JABCC′

then the Lanczos potential satisfies the wave equation

�HABCC′ = JABCC′ + 3∇(A|C′|∇EF ′
HBC)EF ′

+6ΦC′G′C(AHBC)
CG′ − 1

4
RHABCC′

when both trace-free and divergence-free gauge conditions have been imposed. Note that

we have adopted the notation: � = ∇a∇a = ∇AB′∇AB′
. In vacuum this becomes:

�HABCC′ = JABCC′ .

The tensor version of Illge’s wave equation is

�Habc = Jabc − 2Rc
sHabs +Ra

sHbcs +Rb
sHacs

+[Hdbsgac −Hdasgbc]R
ds.



344 Electronic Journal of Theoretical Physics 7, No. 24 (2010) 327–350

However, even Illge’s version contained a typographical error, which was discovered by

Dolan & Kim [17]. Their fully corrected version of the Lanczos wave equation is

�Habc = Jabc − 2Rc
sHabs +Ra

sHbcs +Rb
sHacs

+[Hdbsgac −Hdasgbc]R
ds +

1

2
RHabc.

In fact the only difference between this version and Illge’s version is the factor 1
2
RHabc.

Illge’s spinor version is, however, correct.

7. Physical Interpretation of the Lanczos Potential

This is an area of Lanczos potential theory that remains largely uninvestigated and is

also arguably the most important factor of the theory that requires delineation. The fact

that the Lanczos tensor acts as a potential in an analogous way to the vector potential

in electromagnetic theory is not in itself proof that it is endowed with some physical

presence. Nevertheless, it is a geometrical object of space-time and consequently there is

good reason to presume that it can be interpreted physically.

It was Mark Roberts in his paper ‘The physical interpretation of the Lanczos tensor’

[60] who gave the first account of a possible physical interpretation of the Lanczos po-

tential. In this paper, Roberts investigates a situation analogous to the Aharonov-Bohm

effect [2].

Now, the Lorentz force accounts for the only physical presence of a Maxwell field on

a point charge. It is a classical effect for regions with non-vanishing electric or magnetic

fields. However, in the quantum realm one might have a vanishing electromagnetic field

but non-vanishing vector potential, yet physical effects exist in this region: this is the

Aharonov-Bohm effect. It was hoped that a similar kind of reasoning could be applied

to the Lanczos potential, which might result in determining whether the potential has

dynamical effects, analogous to the vector potential, thus endowing it with some kind of

physical significance. It was concluded that in attempting to exhibit physical significance

a covariant derivative corresponding to the electromagnetic covariant derivative (this

is how the vector potential interacts with the Schrodinger equation) was required. A

number of requirements for the existence of such a covariant derivative were postulated,

but nothing conclusive emerged. Nevertheless, the Roberts paper stirs up some interesting

conjectures as to a possible quantum mechanical description of the Lanczos potential.

The following year in 1997 Göran Bergqvist in his paper ‘A Lanczos potential in

Kerr Geometry’ [8] also postulated a physical description for the Lanczos potential. The

main conclusion was that a relationship existed between the Lanczos potential and the

mass and momentum for the Kerr manifold. In this case the Lanczos potential defines

a flat space-time connection. In their paper ‘Lanczos potential for a rotating black hole’

Gaftoi, López-Bonilla & Ovando [30] also postulated that, in appropriate coordinates,

the Lanczos potential may act as an angular momentum density.
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Appendix

Here we give accounts of some other research that might not directly fit into previous

sections, but are still important contributions to the theory.

Avez [1] adopted the Weyl–Lanczos equations derived by Takeno and characterised a

particular class of Einstein spaces. In fact he was interested in determining (globally) the

effect of the Lanczos potential on space-time. His conclusion was that for a connected, not

necessarily simply, space-time manifold then this space-time would necessarily incorporate

a global coordinate system.

Atkins & Davis [4] adopted Lanczos’ variational procedure, which yielded the Lanczos

potential for non-Abelian gauge theories.

Hammon & Norris [34] were the first to give a precise explanation of the Lanczos

gauge transformations from a proper gauge theoretic perspective and the corresponding

gauge group was identified. They gave a fibre bundle characterisation of the connection

structure which forms the basis of the Lanczos potential structure. This was, in fact, the

generalised affine geometry of linear connections for a space-time manifold.

Edgar [21] obtained a new identity that made more transparent earlier results with

respect to the tensor/spinor formulation of the Lanczos wave equation. He also made

contributions to the identification of the Lanczos potential’s existence and non-existence

in dimensions other than four; see for example [20].
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